
Technical Guideline TR-03112-4

eCard-API-Framework – ISO 24727-3-Interface

Version 1.1.5

7. April 2015

Bundesamt für Sicherheit in der Informationstechnik
Postfach 20 03 63
53133 Bonn

E-Mail: ecard.api@bsi.bund.de
Internet: https://www.bsi.bund.de
© Bundesamt für Sicherheit in der Informationstechnik 2015

Contents
1 Overview of the eCard-API-Framework...6

1.1 Key Words...6

1.2 XML-Schema..7

2 Overview of the ISO24727-3-Interface..8

2.1 Card Application Service Access...8

2.2 Connection Service..8

2.3 Card Application Service...8

2.4 Named data service...9

2.5 Cryptographic service..9

2.6 Differential identity service...10

2.7 Authorization service...10

3 Specification of the ISO24727-3-Interface...11

3.1 Card Application Service Access...11
3.1.1 Initialize..11
3.1.2 Terminate..11
3.1.3 CardApplicationPath..12

3.2 Connection Services..18
3.2.1 CardApplicationConnect..18
3.2.2 CardApplicationDisconnect..24
3.2.3 CardApplicationStartSession..26
3.2.4 CardApplicationEndSession...28

3.3 Card Application Services...29
3.3.1 CardApplicationList...29
3.3.2 CardApplicationCreate...31
3.3.3 CardApplicationDelete...35
3.3.4 CardApplicationServiceList...37
3.3.5 CardApplicationServiceCreate...38
3.3.6 CardApplicationServiceLoad...39
3.3.7 CardApplicationServiceDelete...41
3.3.8 CardApplicationServiceDescribe..42
3.3.9 ExecuteAction..44

3.4 Named Data Services..45
3.4.1 DataSetList...45
3.4.2 DataSetCreate...47
3.4.3 DataSetSelect...48
3.4.4 DataSetDelete...49
3.4.5 DSIList...50
3.4.6 DSICreate...52
3.4.7 DSIDelete...53
3.4.8 DSIWrite..54
3.4.9 DSIRead...56

3.5 Crypto Services...57
3.5.1 Encipher...57
3.5.2 Decipher...59
3.5.3 GetRandom..60
3.5.4 Hash...62
3.5.5 Sign..64
3.5.6 VerifySignature...65

Bundesamt für Sicherheit in der Informationstechnik 3

3.5.7 VerifyCertificate...67

3.6 Differential Identity Services...69
3.6.1 DIDList..69
3.6.2 DIDCreate..72
3.6.3 DIDGet...73
3.6.4 DIDUpdate...77
3.6.5 DIDDelete..78
3.6.6 DIDAuthenticate..79

3.7 Authorization service...82
3.7.1 ACLList...82
3.7.2 ACLModify..84

4 CardInfoFiles..87

4.1 CardInfoType...89

4.2 CardTypeType...90
4.2.1 ProfilingType..91

4.3 CardIdentificationType..92
4.3.1 ATRType..93
4.3.2 ByteMaskType...93
4.3.3 ByteType..94
4.3.4 ATRInterfaceBytesType...94
4.3.5 ATSType...94
4.3.6 ATSInterfaceBytesType..95
4.3.7 CardCallType...95
4.3.8 ResponseAPDUType..96
4.3.9 DataMaskType...97
4.3.10 MatchingDataType...97
4.3.11 MatchingRuleType...98

4.4 CardCapabilitiesType..98
4.4.1 RequirementsType..99
4.4.2 BasicRequirementsType...99
4.4.3 FileRefReqType..99
4.4.4 PathType...100
4.4.5 EFATRorINFOType..101
4.4.6 ISO7816-4-CardServiceDataType..102
4.4.7 BitReqType...104
4.4.8 ISO7816-4-CardCapabilitiesType..104
4.4.9 WriteBehaviourType...106
4.4.10 ExtendedLengthInfoType...107
4.4.11 LengthInfoType..107
4.4.12 CommandSpecificLengthInfoType...108

4.5 ApplicationCapabilitiesType...108
4.5.1 CardApplicationType...109
4.5.2 CardApplicationServiceInfoType...110
4.5.3 AccessControlListType...110
4.5.4 AccessRuleType...111
4.5.5 CardApplicationServiceDescriptionType..111
4.5.6 DIDInfoType..111
4.5.7 DifferentialIdentityType...112
4.5.8 DIDQualifierType...113
4.5.9 DataSetInfoType...113
4.5.10 DSIType...114

4.6 Signature..114

4 Bundesamt für Sicherheit in der Informationstechnik

Table of Figures
Figure 1: Structure of the path to card application..13
Figure 2: ISO/IEC 24727-Architecture...87
Figure 3: Mapping of SAL-function "Sign" to APDUs...88
Figure 4: Example of a decision tree to recognize the card type...103

Bundesamt für Sicherheit in der Informationstechnik 5

1 Overview of the eCard-API-Framework

The objective of the eCard-API-Framework is the provision of a simple and homogeneous interface to enable
standardised use of the various smart cards (eCards) for different applications.

The eCard-API-Framework is sub-divided into the following layers:

• Application-Layer

• Identity-Layer

• Service-Access-Layer

• Terminal-Layer

The Application-Layer contains the various applications which use the eCard-API-Framework to access the
eCards and their associated functions. Application-specific "convenience interfaces", in which the recurring
invocation sequences may be encapsulated in application-specific calls, may also exist in this layer.
However, these interfaces are currently not within the scope of the e-Card-API-framework.

The Identity-Layer comprises the eCard-Interface and the Management interface, and therefore functions
for the use and management of electronic identities as well as for management of the eCard-API-Framework.

The eCard-Interface (refer to [TR-03112-2]) allows to request certificates as well as the encryption,
signature and time-stamping of documents.

In the Management-Interface (refer to [TR-03112-3]), functions for updating the framework and the
management of trusted identities, smart cards, card terminals, and default behaviour are available.

The Service-Access-Layer provides, in particular, functions for cryptographic primitives and biometric
mechanisms in connection with cryptographic tokens, and comprises the ISO24727-3-Interface and the
Support-Interface.

The ISO24727-3-Interface defined in the present document is a webservice-based implementation of the
standard of the same name [ISO24727-3]. This interface contains functions to establish (cryptographically
protected) connections to smart cards, to manage card applications, to read or write data, to perform
cryptographic operations and to manage the respective key material (in the form of so-called "differential
identities"). In the process, all functions which use or manage "differential identities" are parameterised by
means of protocol-specific object identifiers so that the different protocols which are defined in the present
document MAY be used with a standardised interface (refer to [TR-03112-7]).

The Support-Interface (refer to [TR-03112-5]) contains a range of supporting functions.

The Terminal-Layer primarily contains the IFD-Interface (refer to [TR-03112-6]). This layer takes over the
generalisation of specific card terminal types and various interfaces as well as communication with the smart
card. For the user it is unimportant whether the card is addressed by PC/SC, a SICCT terminal or a
proprietary interface, or whether it has contacts or is contact-less.

1.1 Key Words

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted
as described in [RFC2119]. The key word “CONDITIONAL” is to be interpreted as follows:

CONDITIONAL: The usage of an item is dependent on the usage of other items. It is therefore further
qualified under which conditions the item is REQUIRED or RECOMMENDED.

6 Bundesamt für Sicherheit in der Informationstechnik

1.2 XML-Schema

A XML-Schema is provided together with this Technical Guideline. In case of incongruencies, the
specifications in this text take precedence. The graphical representations of the XML-Schema illustrate the
schema. Note that the text of this Guideline might further restrict the presence or mulitplicity of elements as
compared to the schema definition.

Bundesamt für Sicherheit in der Informationstechnik 7

2 Overview of the ISO24727-3-Interface

The ISO24727-3-Interface provides a generic interface for all card-based functions of the various eCards.
The ISO24727-3-Interface provides the following function groups:

• Card Application Service Access

• Connection Service

• Card Application Service

• Named data service

• Cryptographic service

• Authorization service

2.1 Card Application Service Access

• The Initialize function is executed when the ISO24727-3-Interface is invoked for the first time.
The interface is initialised with this function.

• The Terminate function is executed when the ISO24727-3-Interface is terminated. This function
closes all processes.

• The CardApplicationPath function determines the path between a client application and a
card application.

2.2 Connection Service

• The CardApplicationConnect function establishes an unauthenticated connection between
the client application and the card application.

• The CardApplicationDisconnect function terminates the connection between the client
application and the card application.

• The CardApplicationStartSession function starts a session between the client application
and the card application.

• The CardApplicationEndSession function closes a session between the client application
and the card application.

2.3 Card Application Service

• The CardApplicationList function returns the available card applications of an eCard as a
list.

• The CardApplicationCreate function creates a new card application.

• The CardApplicationDelete function deletes a card application on an eCard.

• The CardApplicationServiceList function returns a list of the available services of a card
application on an eCard.

8 Bundesamt für Sicherheit in der Informationstechnik

• The CardApplicationServiceCreate function creates a new service for the card application
on an eCard.

• The CardApplicationServiceLoad function loads executable code, which can be executed
within a service of a card application on the eCard.

• The CardApplicationServiceDelete function deletes a service in a card application on an
eCard.

• The invocation parameters of a service of a card application can be determined with the
CardApplicationServiceDescribe function.

• The ExecuteAction function permits the execution of an action of a service which has been
loaded into a card application on an eCard with the CardApplicationServiceLoad function.

2.4 Named data service

• The DataSetList function supplies a list of data sets in a card application on an eCard. A data set
can contain other data sets and/or a series of data structures for interoperability (DSI) and MAY, for
example, be implemented as a directory file (DF) or an elementary file (EF).

• The DataSetCreate function creates a new data set in a selected card application on an eCard.

• The DataSetSelect function selects a data set of a card application on an eCard.

• The DataSetDelete function deletes a data set of a card application on an eCard.

• The DSIList function returns a list of data structures for interoperability (DSIs) in the currently
selected data set of a card application.

• The DSICreate function creates a DSI in the currently selected data set of a card application.

• The DSIDelete function deletes a DSI in the currently selected data set of a card application.

• The DSIWrite function writes specific content into a DSI in a currently selected data set of an
application.

• The DSIRead function reads the content of a DSI in the currently selected data set of a card
application.

2.5 Cryptographic service

The detailed functionality of the cryptographic service is determined by the protocol of the differential
identity employed. Various protocols and especially the Generic Cryptography protocol are defined in
[TR-03112-7].

• The GetRandom function returns a random number which can be used, for example, for
authentication.

• The VerifySignature function checks a digital signature.

• The VerifyCertificate function validates a certificate.

• The Sign function generates a signature for a communicated binary message.

• The Encipher function encrypts a transmitted plain text.

• The Decipher function decrypts a transmitted cipher text.

Bundesamt für Sicherheit in der Informationstechnik 9

• The Hash function calculates the hash value of a transmitted message.

2.6 Differential identity service

The detailed functionality of the DIDCreate, DIDGet, DIDUpdate and DIDAuthenticate functions
is determined by the protocol (also refer to [TR-03112-7]) of the employed differential identity.

• The DIDList function returns a list of the existing differential identities (DIDs) in the card
application of an eCard.

• The DIDCreate function creates a new differential identity in a card application of an eCard.

• The DIDGet function determines the publicly accessible information (e.g. key reference) of a
differential identity in a card application of an eCard.

• The DIDUpdate function generates a new key (marker) for a differential identity in a card
application of an eCard.

• The DIDDelete function deletes a given differential identity in a card application of an eCard.

• Using one or more differential identities, the DIDAuthenticate function executes an
authentication protocol which is implicitly specified by these identities.

2.7 Authorization service

• The ACLList function returns the currently defined access control rules for accessing a card
application.

• The ACLModify function permits modification of a certain access control rule for access to a card
application.

10 Bundesamt für Sicherheit in der Informationstechnik

3 Specification of the ISO24727-3-Interface

3.1 Card Application Service Access

3.1.1 Initialize
Name Initialize

Description The Initialize function is executed when the ISO24727-3-Interface is
invoked for the first time. The interface is initialised with this function.

Invocation
parameters

Invocation of the Initialize function.

Return

Return of the Initialize function.

Name Description

dss:Result Contains the status information and the errors of
an executed action. This element is described in
more detail below.

Status information and errors in Initialize (also refer to [TR-03112-1]
Sections 4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

ResultMinor • /resultminor/dp#communicationFailure

• /resultminor/al/common#incorrectParameter

ResultMessage MAY contain more detailed information on the error which
occurred if required.

Precondition

Postcondition The other functions of the ISO24727-3-Interface are initialised and can then be
invoked.

Note

3.1.2 Terminate
Name Terminate

Bundesamt für Sicherheit in der Informationstechnik 11

Description The Terminate function is executed when the ISO24727-3-Interface is
terminated. This function closes all established connections and open sessions.

Invocation
parameters

Invocation of the Terminate function.

Return

Response of the Terminate function.

Name Description

dss:Result Contains the status information and the errors of
an executed action. This element is described in
more detail below.

Status information and errors in Terminate (also refer to [TR-03112-1]
Sections 4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

• /resultmajor#warning

ResultMinor • /resultminor/sal#warningConnectionDisconnected

• /resultminor/al/common#incorrectParameter

• /resultminor/sal#notInitialized

• /resultminor/dp#communicationFailure

ResultMessage MAY contain more detailed information on the error which
occurred if required.

Precondition Initialisation with the Initialize function was necessary.

Postcondition All established connections and open sessions are closed with this function. No
functions other than Initialize can be invoked.

Note

3.1.3 CardApplicationPath
Before the CardApplicationPath function is explained in more detail, the structure of possible paths to
a card application will be examined more closely. As shown in Figure 1, the path from a client application to
a card application MAY comprise the following elements:

• ChannelHandle – for addressing a remote framework

• ContextHandle – for addressing a specific IFD layer instance

12 Bundesamt für Sicherheit in der Informationstechnik

• IFDName – for addressing a specific card terminal which is connected to the IFD layer

• SlotIndex – for addressing a specific slot in a card terminal with several slots

• ApplicationIdentifier – for addressing a card application on an eCard.

A so-called "Dispatcher" is provided in each eCard-API instance which forwards messages to the local layers
or also to a remote eCard-API-Framework. The communication channel between the local "Dispatcher" and
the remote "Dispatcher" can be protected by suitable security mechanisms defined in more detail by the
PathSecurity element.

Figure 1: Structure of the path to card application

Name CardApplicationPath

Description The CardApplicationPath function determines a path between the client
application and a card application.

Invocation
parameters

Invocation of the CardApplicationPath function with which the path
between the client application and a card application can be determined.

Name Description

CardApplPathRequest This parameter can be used to limit the space
of the possible paths between the client
application and the card application. If no
restrictions are made, all available paths to the
stated card application are returned. If no card
application is specified, paths to all available
cards (alpha-card applications) and unused
card terminal slots are returned.

Bundesamt für Sicherheit in der Informationstechnik 13

The CardAppPathRequest element is of the type
CardApplicationPathType and is transferred when
CardApplicationPath is invoked.

Name Description

ChannelHandle This parameter MAY specify the addressed "Dispatcher"
and state which additional communication parameters
(e.g. which webservice binding, which security protocol)
should be used for communication. If the parameter is
stated here, only paths with corresponding parameters
(e.g. specific address of the communication end point)
are returned.

ContextHandle This parameter, which is returned by the
EstablishContext function (also refer to
[TR-03112-6]), permits to filter for a specific IFD-Layer
context.

If this parameter is stated here, only paths with the stated
ContextHandle are returned. Otherwise paths with
any ContextHandle are returned. As in a typical
scenario only few ContextHandles are existing, this
parameter SHOULD NOT be used when invoking
CardApplicationPath.

IFDName This parameter, which is returned by the ListIFDs
function (also refer to [TR-03112-6]), addresses a
specific terminal.

If this parameter is stated here, only paths to the stated
terminal are returned. Otherwise paths to any terminals
are returned.

14 Bundesamt für Sicherheit in der Informationstechnik

SlotIndex This parameter, which is returned in the
IFDCapabilities element in the
GetIFDCapabilities function (also refer to
[TR-03112-6]), addresses a specific slot in a terminal.

If this parameter is stated here, only paths to the stated
slot of a terminal are returned. Otherwise paths to any
slots are returned.

CardApplication This parameter addresses a specific card application on
the card specified by the other parameters.

If this parameter is stated here, only paths to card
applications with the stated application identifier are
determined. Otherwise paths to all available alpha-card
applications are returned.

The ChannelHandle element is an optional part of the
CardApplicationPathType and is used to address a remote framework.

Name Description

ProtocolTermination
Point

MAY contain the address of a specific
eCard-API-Framework, whereby URLs according
to [RFC1738] and telephone numbers according
to [RFC3966] are provided in particular.

If this element is missing, paths for the local
framework as well as all other frameworks with
which a connection has been established with
CardApplicationConnect or
EstablishContext are returned.

Bundesamt für Sicherheit in der Informationstechnik 15

SessionIdentifier MAY be used to assign various invocations to a
specific session context.

If this parameter is stated here, only paths with
the stated SessionIdentifier are returned.
Otherwise paths with any
SessionIdentifier are returned. This
parameter SHOULD therefore NOT be used for
invocation of CardApplicationPath.

Binding MAY state which webservice binding should be
used for invocation. The following bindings are
currently provided for this purpose:

• http://schemas.xmlsoap.org/soap/http -
SOAP via HTTP according to
[SOAPv1.1], Section 6

• urn:liberty:paos:2006-08 – Reverse http
Binding for SOAP (PAOS) according to
[PAOSv2.0]

• urn:liberty:paos:2003-08 – Reverse http
Binding for SOAP (PAOS) according to
[PAOSv1.1]

If this element is missing when
CardApplicationPath is invoked, paths
with any bindings are returned.

In other invocations this element need not be
stated if the standard binding
http://schemas.xmlsoap.org/soap/http is to be
used.

PathSecurity1 The security mechanism with which the
communication channel between the local
"Dispatcher" and the remote "Dispatcher" should
be protected can be stated with the
PathSecurity element. See below for details.

If the parameter is stated here, only paths with the
respective security mechanism are returned.

1 Note that the PathSecurity-element in [ISO24727-3] is erroneously not part of the ChannelHandleType,
but directly part of the CardApplicationPathType. As this seemingly minor change leads to problems with
protected Remote-ICC-Stack scenarios, the specification of the eCard-API-Framework and [CEN15480-3]
consciously keeps the PathSecurity-element as part of the ChannelHandleType. This change will be
proposed for a forthcoming amendment of [ISO24727-3].

16 Bundesamt für Sicherheit in der Informationstechnik

http://schemas.xmlsoap.org/soap/http
http://schemas.xmlsoap.org/soap/http

The PathSecurity element is an optional part of the
CardApplicationPathType.

Name Description

Protocol States the protocol used for securing the
connection between the local and remote
"dispatchers". Please refer to Section 2 of
[TR-03112-7] for issues related to the
establishment of secure connections between
distributed systems.

Parameters MAY contain other parameters if required.

Return

Return of the CardApplicationPath function.

Name Description

dss:Result Contains the status information and the errors of
an executed action. This element is described in
more detail below.

CardAppPathResultSet Contains the paths between the client application
and a card application determined during
invocation or – if a path is returned without a
CardApplication – a free slot of a
connected terminal.

Each CardApplicationPathResult
element is of the type
CardApplicationPathType described in
more detail above (refer to page14).

Bundesamt für Sicherheit in der Informationstechnik 17

Status information and errors in CardApplicationPath (also refer to
[TR-03112-1] Sections 4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

• /resultmajor#warning

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/sal#tooManyResults

• /resultminor/dp#communicationFailure

ResultMessage MAY contain more detailed information on the error which
occurred if required.

Precondition

Postcondition

Note An implementation of the eCard-API-Framework SHOULD maintain a list of the
currently valid ContextHandles, to determine the available terminals and their
slots with ListIFDs and GetIFDCapabilities. If a card is captured in a
slot this SHOULD be detected by an appropriate background process and a
connection is established to this card with Connect (also refer to [TR-03112-6])
which is represented with a SlotHandle. Subsequently the type of each
connected card (also refer to Annex A) as well as a list of the card applications
available on this card is determined to provide a response to an enquiry for a
specific CardApplicationPath.

3.2 Connection Services

3.2.1 CardApplicationConnect
Name CardApplicationConnect

Description The CardApplicationConnect function establishes an unauthenticated
connection between the client application and the card application.

18 Bundesamt für Sicherheit in der Informationstechnik

Invocation
parameters

Invocation of the CardApplicationConnect function.

Name Description

Bundesamt für Sicherheit in der Informationstechnik 19

CardApplicationPath The CardApplicationPath element
contains the path to the card application to which
a connection is to be established and is of the type
CardApplicationPathType which was
explained previously (refer to page 14).

Which child elements of
CardApplicationPath are required and
recommended depends on the use case under
consideration and one may distinguish the
following scenarios:

1. If the local eCard-API-Framework is
addressed, one MAY omit the
ProtocolTerminationPoint or
ChannelHandle parameter
respectively.

2. If the local eCard-API-Framework
actively establishes a channel to a remote
framework the
ProtocolTerminationPoint
parameter MUST be present.

3. In both cases above it is
RECOMMENDED to include the
ContextHandle, IFDName,
SlotIndex and
CardApplication-parameters to
avoid ambiguities. If the provided path
fragments are valid for more than one
card application the
eCard-API-Framework SHALL return
any of the possible choices.

4. If the local eCard-API-Framework
however waits for incoming requests,
which may use the PAOS-binding, the
SessionIdentifier-parameter
MUST be present and it is
RECOMMENDED to include the
Binding-parameter and omit all other
parameters.

Output2 By using the output element a corresponding
message (e.g. "Please insert eCard") can be
output if necessary – i.e. if there is no card
available in the card terminal slot. The structure
of the OutputType is explained in
[TR-03112-6].

2 Note that this element is missing in the current version of [ISO24727-3]. Because of the additional
Output-element it is not necessary for a typical client-application do get in contact with the IFD-Layer directly,
Therefore the specification of the eCard-API-Framework and [CEN15480-3] consciously add this optional element.
This change will be proposed for a forthcoming amendment of [ISO24727-3].

20 Bundesamt für Sicherheit in der Informationstechnik

ExclusiveUse If the element has the value TRUE, this means
that the card (application) should be used
exclusively. As a result no other client application
is able to access the card application until the
function CardApplicationDisconnect
has been invoked. If this element is missing, the
default value FALSE is implicitly assumed.

Return

Return of the CardApplicationConnect function.

Name Description

dss:Result Contains the status information and the errors of an
executed action. This element is described in more
detail below.

ConnectionHandle Contains a handle with which the established
connection to a card application is addressed. This
handle is of type ConnectionHandleType
which is derived from the
CardApplicationPathType (also refer to
page 14) by extension of the elements
SlotHandle and RecognitionInfo.

Bundesamt für Sicherheit in der Informationstechnik 21

The ConnectionHandle is returned when CardApplicationConnect is
invoked and represents a connection to a card application. In addition to the
elements from the CardApplicationPathType (also refer to page 14), the
two elements SlotHandle and RecognitionInfo are also returned.

Name Description

SlotHandle With the SlotHandle the connection to the eCard
established with Connect (also refer to
[TR-03112-6]) is addressed.

If the card recognition procedure is automatically
performed after connecting to a card and it is
determined that the card type of the connected card is
unknown (see description of CardType-parameter
below), the SAL SHOULD automatically use
Disconnect (also refer to [TR-03112-6]) to avoid
interferences with other software products and hence
the SlotHandle SHOULD be omitted in this case.

RecognitionInfo The RecognitionInfo element contains
additional information which is determined during
recognition of the card type (also refer to Annex A)
and which can be used by a client application to
differentiate between the various cards which are
accessible by the system. See below for details.

22 Bundesamt für Sicherheit in der Informationstechnik

The RecognitionInfo element is part of ConnectionHandle (see above)
and MAY contain information, which was gathered during the card recognition
procedure.

Name Description

CardType Contains the unique identifier for the recognised card
type (also refer to Annex A). If the card recognition
procedure succeeds this element MUST be included and
contain the unique identifier of the recognized card type.

If the card recognition procedure has been performed, but
it was not possible to determine the card type this
SHOULD be indicated by the value
http://www.bsi.bund.de/cif/unknown in the
CardType-element. In this case the
CardIdentifier-element SHOULD contain the ATR
or ATS of the card, if it exists.

CardIdentifier MAY contain the unique identifier of the connected card,
if the card type features a unique identifier (ICCSN, PAN
etc.).3

If the CardType-element has the value
http://www.bsi.bund.de/cif/unknown, the
CardIdentifier-element SHOULD contain the ATR
or ATS of the card, if it exists.

CaptureTime MAY contain the time at which the card was recognised.

3 In case of the German eHealth-card for example, the CardIdentifier-element will contain the 10 byte long
value (without tag and length) of the data object DO_ICCSN, which is stored in EF.GDO (cf. [eGK-2], Section
6.2.5).

Bundesamt für Sicherheit in der Informationstechnik 23

http://www.bsi.bund.de/cif/unknown
http://www.bsi.bund.de/cif/unknown

Status information and errors in CardApplicationConnect (also refer to
[TR-03112-1] Section 4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#notInitialized

• /resultminor/sal#exclusiveNotAvailable

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/dp#communicationFailure

ResultMessage MAY contain more detailed information on the error which
occurred if required.

Precondition The stated path to the card application MUST at least contain the REQUIRED
elements (see specification of CardApplicationPath-parameter on page
20).

Postcondition A connection to the card application has been established. This means that a
corresponding SlotHandle has been created with Connect (also refer to
[TR-03112-6]) and the card application was selected.

Note Determination of the RecognitionInfo MAY already be performed during
automatic registration of the card, for example after return of Wait (also refer to
[TR-03112-6]) and the establishment of a connection with Connect.

If the connection to the card is requested to be exclusive and there was previously
only a non-exclusive connection to the card, this connection is disconnected with
Disconnect and re-established with Connect with the parameter
Exclusive = True. In this case repeated recognition of the card type MAY
be omitted.

3.2.2 CardApplicationDisconnect
Name CardApplicationDisconnect

Description The CardApplicationDisconnect function terminates the connection to a
card application.

Invocation
parameters

Invocation of CardApplicationDisconnect.

Name Description

24 Bundesamt für Sicherheit in der Informationstechnik

ConnectionHandle Contains a handle with which the established
connection to a card application is addressed (also
refer to page 22).

Action Optional parameter which states an action which is to
be performed additionally. This parameter is of type
ActionType4 and identical to the Action
parameter in the Disconnect function (also refer
to [TR-03112-6]).

Return

Return of CardApplicationDisconnect.

Name Description

dss:Result Contains the status information and the errors of an
executed action. This element is described in more
detail below.

Status information and errors in CardApplicationDisconnect (also refer
to [TR-03112-1] Sections 4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

• /resultmajor#warning

ResultMinor • /resultminor/sal#warningSessionEnded

• /resultminor/sal/common#incorrectParameter

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/dp#communicationFailure

ResultMessage MAY contain more detailed information on the error which
occurred if required.

Precondition A connection to a card application has been established with
CardApplicationConnect.

Postcondition The logical connection to the card application was terminated. Disconnect was
invoked in particular (also refer to [TR-03112-6]), whereby the SlotHandle as
part of the ConnectionHandle has lost its validity.

Note

4 Note that the type of the Action-parameter in [ISO24727-3] is named ReaderAction, which is not defined in
[ISO24727-4]. Therefore the specification of the eCard-API-Framework and [CEN15480-3] use the ActionType.
This change will be proposed for a forthcoming defect report of [ISO24727-3].

Bundesamt für Sicherheit in der Informationstechnik 25

3.2.3 CardApplicationStartSession
Name CardApplicationStartSession

Description This CardApplicationStartSession function starts a session between
the client application and the card application.

Invocation
parameters

Invocation of the CardApplicationStartSession function.

Name Description

ConnectionHandle Contains a handle with which the
connection to a card application is
addressed (also refer to page 22).

DIDScope Is an optional parameter which
resolves any ambivalence regarding
DIDName if necessary. It is only stated
if there is a global and local DID with
the name DIDName.

DIDName Contains the name of the differential
identity in this card application which
is to be used for establishing the
session.

AuthenticationProtocolData Protocol data which are transferred
when CardApplicationStart
Session is invoked. The
DIDAuthenticationDataType
is defined as an open type depending
on a Protocol attribute so that the
detailed structure of this parameter can
be defined within the framework of the
protocol specification (also refer to
[TR-03112-7]).

26 Bundesamt für Sicherheit in der Informationstechnik

SAMConnectionHandle Contains a handle with which the
connection to a card application which
is assigned to the
eCard-API-Framework (e.g. in a
security access module) is addressed.

Return

Response of the CardApplicationStartSession function.

Name Description

dss:Result Contains the status information and the errors
of an executed action. This element is
described in more detail below.

DIDAuthenticationData Protocol data which are returned when
CardApplicationStartSession is
returned.

The DIDAuthenticationDataType is
defined as an open type in dependence on a
Protocol attribute so that the detailed
strucure of this parameter can be defined
within the framework of the protocol
specification (also refer to [TR-03112-7]).

Status information and errors in CardApplicationStartSession (also
refer to [TR-03112-1] Sections 4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

• /resultmajor#nextRequest

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#namedEntityNotFound

• /resultminor/sal#protocolNotRecognized

• /resultminor/sal#inappropriateProtocolForAction

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/sal#insufficientResources

• /resultminor/dp#communicationFailure

In addition, other protocol specific error messages MAY
exist.

Bundesamt für Sicherheit in der Informationstechnik 27

ResultMessage MAY contain more detailed information on the error which
occurred if required.

Precondition A connection to a card application has been established with
CardApplicationConnect.

Postcondition A session to the stated card application has been established. The details (e.g.
whether secure messaging is performed) are contained in the protocol
specification (also refer to [TR-03112-7]).

Note

3.2.4 CardApplicationEndSession
Name CardApplicationEndSession

Description The CardApplicationEndSession function closes the session between the
client application and the card application.

Invocation
parameters

Invocation of CardApplicationEndSession.

Name Description

ConnectionHandle Contains a handle with which the connection to a
card application is addressed.

Return

Return of CardApplicationEndSession.

Name Description

dss:Result Contains the status information and the errors of an
executed action. This element is described in more
detail below.

28 Bundesamt für Sicherheit in der Informationstechnik

Status information and errors in CardApplicationEndSession (also refer
to [TR-03112-1] Sections 4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

• /resultmajor#warning

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#noActiveSession

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/dp#communicationFailure

ResultMessage MAY contain more detailed information on the error which
occurred if required.

Precondition Using CardApplicationConnect and
CardApplicationStartSession, a session to a card application has been
established.

Postcondition The secure session to the card application is terminated, but the
ConnectionHandle generated with CardApplicationConnect remains
valid until CardApplicationDisconnect has been invoked.

Note

3.3 Card Application Services

3.3.1 CardApplicationList
Name CardApplicationList

Description The CardApplicationList function returns a list of the available card
applications on an eCard.

Invocation
parameters

Invocation of the CardApplicationList function.

Name Description

ConnectionHandle Contains a handle with which the connection to a
card application is addressed (also refer to page
22).

Bundesamt für Sicherheit in der Informationstechnik 29

Return

Return of the CardApplicationList function.

Name Description

dss:Result Contains the status information and
the errors of an executed action. This
element is described in more detail
below.

CardApplicationNameList Contains a list of the names for the
existing card applications (see below
for details).

Part of CardApplicationNameList (see above).

Name Description

CardApplicationName Name (application identifier) of the
available card applications.

Status information and errors in CardApplicationList (also refer to
[TR-03112-1] Sections 4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#notInitialized

• /resultminor/sal#
securityConditionNotSatisfied

• /resultminor/dp#communicationFailure

ResultMessage MAY contain more detailed information on the error
which occurred if required.

Precondition A connection to the alpha card application has been established with
CardApplicationConnect.

Postcondition

Note The list of card applications MAY be derived from the contents of the
EF.DIR (also refer to [ISO7816-4]), the application capability description
(also refer to [ISO24727-2]) or the CardInfo file.

30 Bundesamt für Sicherheit in der Informationstechnik

3.3.2 CardApplicationCreate
Name CardApplicationCreate

Description A new card application is created on an eCard with the
CardApplicationCreate function.

Invocation
parameters

Invocation of CardApplicationCreate.

Name Description

ConnectionHandle Contains a handle with which the
connection to a card application is
addressed (also refer to page 22). This
MUST be the alpha card application of
the card.

CardApplicationName Contains the name of the card application
to be created in the form of an
application identifier.

CardApplicationACL Is of type AccessControlListType
and contains the access rules for the
services and actions in this card
application (see below for details).

Elements of the AccessControlListType are used in
CardApplicationCreate, DataSetCreate and DIDCreate and
in the CardInfo structure.

Name Description

Bundesamt für Sicherheit in der Informationstechnik 31

AccessRule An element of type AccessControlListType
contains a sequence of AccessRule elements (see
below for details). It is important to note that the
AccessControlType is used for three different
target objects:

• Card applications and the services they
contain,

• DataSets and

• Differential Identities

The AccessRule element is part of the AccessControlListType
and contains an access control rule for a card application service, a
DataSet or a DID.

Name Description

CardApplication
ServiceName5

MAY contain the name of the card application
service, whereby this information is not
essential for services which have been
standardised within the framework of
[ISO24727-3].

Action Contains the action which is to be performed
on the target object (card application, DataSet
or DID) (see below for details).

SecurityCondition Contains the security conditions for access to
the respective target object (card application,
DataSet or DID) (see below for details).

5 Note that the current version of [ISO24727-3] erroneously only allows the predefined card application service
names and hence it would not be possible to define new card application services, which would render the
CardApplicationServiceCreate-function (cf. Section 3.3.5) useless. Therefore the present specification
and [CEN15480-3] consciously define the CardApplicationServiceName-parameter as string. This change
will be proposed for a forthcoming defect report of [ISO24727-3].

32 Bundesamt für Sicherheit in der Informationstechnik

The Action element is part of the AccessRule element (refer to page
32).

Name Description

APIAccessEntryPoint States the name of a function from section
3.1.

ConnectionService
Action

States the name of a function from section
3.2.

CardApplication
Action

States the name of a function from section
3.3.

NamedDataService
Action

States the name of a function from section
3.4.

CryptographicService
Action

States the name of a function from section
3.5.

DifferentialIdentity
ServiceAction

States the name of a function from section
3.6.

AuthorizationService
Action

States the name of a function from section
3.7.

LoadedAction6 States the name of an additionally loaded
function.

6 Note that the current version of [ISO24727-3] erroneously does not allow a non-standardized loaded action to
appear in this parameter, which would allow that only the actions already standardized in [ISO24727-3] could be
loaded with the CardApplicationServiceLoad-function (cf. Section 3.3.6), which would render this
function almost useless. Therefore the present specification and [CEN15480-3] consciously add the
LoadedAction-alternative. This change will be proposed for a forthcoming defect report of [ISO24727-3].

Bundesamt für Sicherheit in der Informationstechnik 33

The SecurityCondition element is part of the AccessRule element
and can contain any Boolean expression, which consists of the terminal
elements DIDAuthenticationState, always or never, which
MAY be combined using the operators not, and and or.

As a general rule, access which is not explicitly permitted is forbidden.
Therefore explicit statement of a SecurityCondition with never MAY be
omitted.

Name Description

DIDAuthentication
State

Contains at least the name of a DID
(DIDName) and the required Boolean
authentication condition (DIDState). In
addition, DIDScope and a
DIDStateQualifier7 MAY be present,
which resolve ambiguity if required. The
DIDStateQualifier is typically used in
certificate-based authentication processes and
contains the “Certificate Holder Authorization
(Template)”, which states the rights of the
certificate holder.

always States that access is always permitted.

never States that access is never permitted.

not Is used to negate an expression shown as a
SecurityCondition.

and Is used to conjunctively link several
expressions shown as a
SecurityCondition.

7 Note that the current version of [ISO24727-3] erroneously does not contain the optional DIDStateQualifier.
Because this element is necessary in certificate-based authentication scenarios the present specification and
[CEN15480-3] consciously add this alternative. This change will be proposed for a forthcoming defect report of
[ISO24727-3].

34 Bundesamt für Sicherheit in der Informationstechnik

or Is used to disjunctively link several
expressions shown as a
SecurityCondition.

Return

Return of CardApplicationCreate.

Name Description

dss:Result Contains the status information and the
errors of an executed action. This element is
described in more detail below.

Status information and errors in CardApplicationCreate (also refer
to [TR-03112-1] Sections 4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

• /resultmajor#warning

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#nameExists

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNot
Satisfied

• /resultminor/sal#prerequisiteNotSatisfied

• /resultminor/sal#insufficientResources

• /resultminor/dp#communicationFailure

ResultMessage MAY contain more detailed information on the error
which occurred if required.

Precondition CardApplicationConnect was used to establish a connection to the
"alpha card application" (or the master file).

Postcondition The "alpha card application" remains selected.

Note Creation of a new card application results in changes to EF.DIR, the card
capability description according to section 6.1 of [ISO24727-2], the
[ISO7816-15] structures on the card and/or the corresponding CardInfo
file.

3.3.3 CardApplicationDelete
Name CardApplicationDelete

Description The CardApplicationDelete function deletes a card application as well
as all corresponding data sets, DSIs, DIDs and services.

Bundesamt für Sicherheit in der Informationstechnik 35

Invocation
parameters

Invocation of the CardApplicationDelete function.

Name Description

ConnectionHandle Contains a handle with which the connection
to a card application is addressed (also refer
to page 22).

CardApplicationName Contains the name of the card application,
which is to be deleted.

Return

Return of the CardApplicationDelete function.

Name Description

dss:Result Contains the status information and the errors
of an executed action. This element is
described in more detail below.

Status information and errors in CardApplicationDelete (also refer to
[TR-03112-1] Sections 4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

• /resultmajor#warning

ResultMinor • resultminor/sal#
warningConnectionDisconnected

• /resultminor/al/common#incorrectParameter

• /resultminor/sal#namedEntityNotFound

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/sal#prerequisiteNotSatisfied

• /resultminor/dp#communicationFailure

ResultMessage MAY contain more detailed information on the error
which occurred if required.

36 Bundesamt für Sicherheit in der Informationstechnik

Precondition A connection to the alpha card application (or master file) or the card
application which is to be deleted has been established with
CardApplicationConnect.

Postcondition The card application (incl. its services, data sets and DIDs) was deleted. Any
existing connections to the deleted card application are terminated.

Note Deletion of a card application results in changes to EF.DIR, the card capability
description according to section 6.1 of [ISO24727-2], the [ISO7816-15]
structures on the card and/or the corresponding CardInfo file.

3.3.4 CardApplicationServiceList
Name CardApplicationServiceList

Description The CardApplicationServiceList function returns a list of all
available services of a card application.

Invocation
parameters

Invocation of the CardApplicationServiceList function.

Name Description

ConnectionHandle Contains a handle with which the connection to a
card application is addressed.

Return

Return of the CardApplicationServiceList function.

Name Description

dss:Result Contains the status information and the
errors of an executed action. This
element is described in more detail
below.

CardApplicationService
NameList

Contains a list of the names of all
services contained in the card
application (see below for details).

The CardApplicationServiceNameList element is part of the return
of CardApplicationServiceList.

Name Description

Bundesamt für Sicherheit in der Informationstechnik 37

CardApplication
ServiceName8

Contains the name of the card application service,
whereby only additional services which are not
specified in [ISO24727-3] are contained in the list.

Status information and errors in CardApplicationServiceList (also
refer to [TR-03112-1] Sections 4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/dp#communicationFailure

ResultMessage MAY contain more detailed information on the error
which occurred if required.

Precondition A connection to a card application has been established with
CardApplicationConnect.

Postcondition

Note The available services in a card application are contained in the application
capability description (also refer to [ISO24727-2]) or the CardInfo file.

3.3.5 CardApplicationServiceCreate
Name CardApplicationServiceCreate

Description The CardApplicationServiceCreate function creates a new service in
the card application.

Invocation
parameters

Invocation of the CardApplicationServiceCreate function.

Name Description

ConnectionHandle Contains a handle with which the
connection to a card application is
addressed (also refer to page 22).

CardApplicationService
Name9

Contains the name of the card application
service which is to be created.

8 See footnote on page 32.
9 See footnote on page 32.

38 Bundesamt für Sicherheit in der Informationstechnik

Return

Return of the CardApplicationServiceCreate function.

Name Description

dss:Result Contains the status information and the errors of an
executed action. This element is described in more
detail below.

Status information and errors in CardApplicationServiceCreate
(also refer to [TR-03112-1] Sections 4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#nameExists

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNot
Satisfied

• /resultminor/sal#insufficientResources

• /resultminor/dp#communicationFailure

ResultMessage MAY contain more detailed information on the error
which occurred if required.

Precondition A connection to a card application has been established with
CardApplicationConnect.

Postcondition The new service has been created in the card application.

Note The newly added service MUST be supplemented in the application capability
description (also refer to [ISO24727-2]) or the CardInfo file.

3.3.6 CardApplicationServiceLoad
Name CardApplicationServiceLoad

Description Code for a specific card application service was loaded into the card application
with the aid of the CardApplicationServiceLoad function.

Bundesamt für Sicherheit in der Informationstechnik 39

Invocation
parameters

Invocation of the CardApplicationServiceLoad function.

Name Description

ConnectionHandle Contains a handle with which the connection to a
card application is addressed (also refer to page
22).

CardApplication
ServiceName10

Contains the name of the card application service
with which the corresponding code should be
loaded into the card application.

Code Contains the executable code for the stated card
application service.

Return

Return of the CardApplicationServiceLoad function.

Name Description

dss:Result Contains the status information and the errors of
an executed action. This element is described in
more detail below.

Status information and errors in CardApplicationServiceLoad (also
refer to [TR-03112-1] Sections 4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#namedEntityNotFound

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/sal#insufficientResources

• /resultminor/dp#communicationFailure

10 See footnote on page 32.

40 Bundesamt für Sicherheit in der Informationstechnik

ResultMessage MAY contain more detailed information on the error
which occurred if required.

Precondition A connection to a card application has been established with
CardApplicationConnect. The corresponding service already exists in
the card application.

Postcondition

Note It must be noted that re-loading of card application services can involve
additional risks which require additional security measures on the card and/or in
the organisational environment of the eCard-API-Framework. Such security
measures are, however, are beyond the scope of this document.

3.3.7 CardApplicationServiceDelete
Name CardApplicationServiceDelete

Description The CardApplicationServiceDelete function deletes a card
application service in a card application.

Invocation
parameters

Invocation of the CardApplicationServiceDelete function.

Name Description

ConnectionHandle Contains a handle with which the connection to
a card application is addressed (also refer to
page 22).

CardApplication
ServiceName11

Contains the name of the card application
service which is to be deleted.

Return

Return of the CardApplicationServiceDelete function.

Name Description

dss:Result Contains the status information and the errors of
an executed action. This element is described in
more detail below.

11 See footnote on page 32.

Bundesamt für Sicherheit in der Informationstechnik 41

Status information and errors in CardApplicationServiceDelete (also
refer to [TR-03112-1] Sections 4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#namedEntityNotFound

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/dp#communicationFailure

ResultMessage MAY contain more detailed information on the error
which occurred if required.

Precondition A connection to a card application has been established with
CardApplicationConnect.

Postcondition The card application service has been deleted.

Note The deleted service MUST be removed from the application capability
description (also refer to [ISO24727-2]) or the CardInfo file.

3.3.8 CardApplicationServiceDescribe
Name CardApplicationServiceDescribe

Description The CardApplicationServiceDescribe function can be used to
request an URI, an URL or a detailed description of the selected card
application service.

Invocation
parameters

Invocation of the CardApplicationServiceDescribe function.

Name Description

ConnectionHandle Contains a handle with which the connection to
a card application is addressed (also refer to
page 22).

CardApplication
ServiceName12

Contains the name of the card application
service for which the interface description
should be determined.

12 See footnote on page 32.

42 Bundesamt für Sicherheit in der Informationstechnik

Return parameters

Return of the CardApplicationServiceDescribe function.

Name Description

dss:Result Contains the status information and the errors
of an executed action. This element is
described in more detail below.

ServiceDescripton Contains the description of the interface for use
of the stated card application service (see
below for details).

The ServiceDescripton element is part of the return of
CardApplicationServiceDescribe (see above).

Name Description

ServiceDescriptionText Interface description of the card
application service.

ServiceDescriptionURL URL from which the interface
description of the card application
service may be downloaded.

Status information and errors in CardApplicationService
Describe (also refer to [TR-03112-1] Sections 4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#namedEntityNotFound

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNot
Satisfied

• /resultminor/dp#communicationFailure

ResultMessage MAY contain more detailed information on the error
which occurred if required.

Precondition A connection to a card application has been established with

Bundesamt für Sicherheit in der Informationstechnik 43

CardApplicationConnect.

Postcondition

Note The interface description is contained in the application capability
description (also refer to [ISO24727-2]) or the CardInfo file.

3.3.9 ExecuteAction
Name ExecuteAction

Description The ExecuteAction function permits use of additional card application
services by the client application which are not explicitly specified in
[ISO24727-3] but which can be implemented by the eCard with additional code.

Invocation
parameters

Invocation of the ExecuteAction function.

Name Description

ConnectionHandle Contains a handle with which the connection to a
card application is addressed (also refer to page
22).

CardApplication
ServiceName13

Contains the name of the card application service
in which a function should be invoked.

ActionName States which function should be invoked.

Request Contains the required invocation parameters.

Return

Return of the ExecuteAction function.

Name Description

13 See footnote on page 32.

44 Bundesamt für Sicherheit in der Informationstechnik

dss:Result Contains the status information and the errors of
an executed action. This element is described in
more detail below.

Confirmation Contains the data returned by the card application
service.

Status information and errors in ExecuteAction (also refer to [TR-03112-1]
Sections 4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#namedEntityNotFound

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/sal#insufficientResources

• /resultminor/dp#communicationFailure

ResultMessage MAY contain more detailed information on the error
which occurred if required.

Precondition A connection to a card application has been established with
CardApplicationConnect. The service with executable code is contained
in the card application.

Postcondition

Note

3.4 Named Data Services

3.4.1 DataSetList
Name DataSetList

Description The DataSetList function returns the list of the data sets in the card
application addressed with the ConnectionHandle.

Invocation
parameters

Invocation of the DataSetList function.

Name Description

ConnectionHandle Contains a handle with which the connection to a
card application is addressed (also refer to page
22).

Bundesamt für Sicherheit in der Informationstechnik 45

Return

Return of the DataSetList function.

Name Description

dss:Result Contains the status information and the errors of an
executed action. This element is described in more
detail below.

DataSetNameList Contains a list of the names of data sets and, if
applicable, additional information on the data set
(see below for details).

The DataSetNameList element is part of DataSetListResponse.

Name Description

DataSetName States the name of the data set.

Status information and errors in DataSetList (also refer to [TR-03112-1]
Sections 4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/dp#communicationFailure

ResultMessage MAY contain more detailed information on the error
which occurred if required.

Precondition A connection to a card application has been established with
CardApplicationConnect.

Postcondition

Note The list of the data sets is contained in the application capability description
(also refer to [ISO24727-2]), in a [ISO7816-15] structure on the card or the
CardInfo file.

46 Bundesamt für Sicherheit in der Informationstechnik

3.4.2 DataSetCreate
Name DataSetCreate

Description The DataSetCreate function creates a new data set in the card application
addressed with the ConnectionHandle (or otherwise in a previously
selected data set if this is implemented as a DF).

Invocation
parameters

Invocation of the DataSetCreate function.

Name Description

ConnectionHandle Contains a handle with which the connection to a
card application is addressed (also refer to page
22).

DataSetName Contains the name of the new data set which is to
be created.

DataSetACL Contains access control information for the new
data set which is to be created. Details on the
AccessControlListType are given on
page 31.

Return

Return of the DataSetCreate function.

Name Description

dss:Result Contains the status information and the errors
of an executed action. This element is
described in more detail below.

Bundesamt für Sicherheit in der Informationstechnik 47

Status information and errors in DataSetCreate (also refer to
[TR-03112-1] Sections 4.1 and 4.2.

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#nameExists

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/sal#insufficientResources

• /resultminor/dp#communicationFailure

ResultMessage MAY contain more detailed information on the error
which occurred if required.

Precondition A connection to a card application has been established with
CardApplicationConnect.

Postcondition There is a newly created data set in the connected card application and this data
set is automatically selected.

Note The newly created data set MUST be noted in the application capability
description (also refer to [ISO24727-2]), in a [ISO7816-15] structure on the
card or the CardInfo file.

3.4.3 DataSetSelect
Name DataSetSelect

Description The DataSetSelect function selects a data set in a card application.

Invocation
parameters

Invocation of the DataSetSelect function.

Name Description

ConnectionHandle Contains a handle with which the connection to a
card application is addressed (also refer to page 22).

DataSetName Contains the name of the data set which is to be
selected.

48 Bundesamt für Sicherheit in der Informationstechnik

Return

Return of the DataSetSelect function.

Name Description

dss:Result Contains the status information and the errors of
an executed action. This element is described in
more detail below.

Status information and errors in DataSetSelect (also refer to [TR-03112-1]
Sections 4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#namedEntityNotFound

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/dp#communicationFailure

ResultMessage MAY contain more detailed information on the error
which occurred if required.

Precondition A connection to a card application has been established with
CardApplicationConnect.

Postcondition The stated data set has been selected.

Note

3.4.4 DataSetDelete
Name DataSetDelete

Description The DataSetDelete function deletes a data set of a card application on an
eCard.

Invocation
parameters

Invocation of the DataSetDelete function.

Name Description

Bundesamt für Sicherheit in der Informationstechnik 49

ConnectionHandle Contains a handle with which the connection
to a card application is addressed (also refer
to page 22).

DataSetName Contains the name of the data set.

Return

Return of the DataSetDelete function.

Name Description

dss:Result Contains the status information and the errors of an
executed action. This element is described in more
detail below.

Status information and errors in DataSetDelete (also refer to [TR-03112-1]
Sections 4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#namedEntityNotFound

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/dp#communicationFailure

ResultMessage MAY contain more detailed information on the error which
occurred if required.

Precondition A connection to a card application has been established with
CardApplicationConnect.

Postcondition The respective data set is deleted.

Note

3.4.5 DSIList
Name DSIList

Description The function DSIList supplies the list of the DSI (Data Structure for
Interoperability) which exist in the selected data set.

Invocation
parameters

Invocation of the DSIList function.

50 Bundesamt für Sicherheit in der Informationstechnik

Name Description

ConnectionHandle Contains a handle with which the connection to a card
application is addressed.

Return

Return of the DSIList function.

Name Description

dss:Result Contains the status information and the errors of
an executed action. This element is described in
more detail below.

DSINameList Contains the list of the names of the existing
DSIs. See below for details.

The DSINameList element is part of DSIListResponse.

Name Description

DSIName States the name of the DSI.

Status information and errors in DSIList (also refer to [TR-03112-1] Sections
4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/sal#prerequisitesNotSatisfied

• /resultminor/dp#communicationFailure

ResultMessage MAY contain more detailed information on the error which
occurred if required.

Precondition A connection to a card application has been established with
CardApplicationConnect.

Postcondition

Bundesamt für Sicherheit in der Informationstechnik 51

Note It can be seen which data sets exist in a card application by inspecting the
application capability description (also refer to [ISO24727-2]), a suitable
[ISO7816-15] structure on the card or the CardInfo file.

3.4.6 DSICreate
Name DSICreate

Description The DSICreate function creates a DSI (Data Structure for Interoperability) in
the currently selected data set.

Invocation
parameters

Invocation of the DSICreate function.

Name Description

ConnectionHandle Contains a handle with which the connection to a
card application is addressed.

DSIName Contains the name of the DSI which is to be created.

DSIContent Contains the content of the DSI which is to be
created.

Return

Return of the DSICreate function.

Name Description

dss:Result Contains the status information and the errors of an
executed action. This element is described in more detail
below.

52 Bundesamt für Sicherheit in der Informationstechnik

Status information and errors in DSICreate (also refer to [TR-03112-1]
Sections 4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#nameExists

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/sal#prerequisitesNotSatisfied

• /resultminor/sal#insufficientResources

• /resultminor/dp#communicationFailure

ResultMessage MAY contain more detailed information on the error
which occurred if required.

Precondition A connection to a card application has been established with
CardApplicationConnect. In addition a data set has been selected with
DataSetSelect.

Postcondition A DSI has been created in the data set, if the request was succesful.

Note The list of the data sets is contained in the application capability description (also
refer to [ISO24727-2]), in a [ISO7816-15] structure on the card or the
CardInfo file.

3.4.7 DSIDelete
Name DSIDelete

Description The DSIDelete function deletes a DSI (Data Structure for Interoperability)
in the currently selected data set.

Invocation
parameters

Invocation of the DSIDelete function.

Name Description

ConnectionHandle Contains a handle with which the connection to a
card application is addressed (also refer to page 22).

DSIName Contains the name of the DSI to be deleted.

Bundesamt für Sicherheit in der Informationstechnik 53

Return

Return of the DSIDelete function.

Name Description

dss:Result Contains the status information and the errors of
an executed action. This element is described in
more detail below.

Status information and errors in DSIDelete (also refer to [TR-03112-1]
Sections 4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#namedEntityNotFound

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/sal#prerequisitesNotSatisfied

• /resultminor/dp#communicationFailure

ResultMessage MAY contain more detailed information on the error
which occurred if required.

Precondition A connection to a card application has been established with
CardApplicationConnect. In addition a data set was selected with
DataSetSelect.

Postcondition The DSI has been deleted.

Note The list of the data sets is contained in the application capability description
(also refer to [ISO24727-2]), in a [ISO7816-15] structure on the card or the
CardInfo file.

3.4.8 DSIWrite
Name DSIWrite

Description The DSIWrite function changes the content of a DSI (Data Structure for
Interoperability).

54 Bundesamt für Sicherheit in der Informationstechnik

Invocation
parameters

Invocation of the DSIWrite function.

Name Description

ConnectionHandle Contains a handle with which the connection to a
card application is addressed (also refer to page 22).

DSIName Contains the name of the DSI.

DSIContent Contains the content of a DSI.

Return

Return of the DSIWrite function.

Name Description

dss:Result Contains the status information and the errors of an executed
action. This element is described in more detail below.

Status information and errors in DSIWrite (also refer to [TR-03112-1] Sections
4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#namedEntityNotFound

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/sal#prerequisitesNotSatisfied

• /resultminor/sal#insufficientResources

• /resultminor/dp#communicationFailure

ResultMessage MAY contain more detailed information on the error which
occurred if required.

Precondition A connection to a card application has been established with

Bundesamt für Sicherheit in der Informationstechnik 55

CardApplicationConnect. In addition a data set was selected with
DataSetSelect. The DSI has been created.

Postcondition The content of the DSI has been updated.

Note

3.4.9 DSIRead
Name DSIRead

Description The DSIRead function reads out the content of a specific DSI (Data Structure for
Interoperability).

Invocation
parameters

Invocation of the DSIRead function.

Name Description

ConnectionHandle Contains a handle with which the connection to a
card application is addressed (also refer to page 22).

DSIName Contains the name of the DSI of which the content is
to be read out.

Return

Return of the DSIRead function.

Name Description

dss:Result Contains the status information and the errors of an
executed action. This element is described in more detail
below.

DSIContent Contains the content of the DSI if it was possible to read it.

56 Bundesamt für Sicherheit in der Informationstechnik

Status information and errors in DSIRead (also refer to [TR-03112-1] Sections
4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#namedEntityNotFound

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/sal#prerequisitesNotSatisfied

• /resultminor/dp#communicationFailure

ResultMessage MAY contain more detailed information on the error which
occurred if required.

Precondition A connection to a card application has been established with
CardApplicationConnect. In addition a data set was selected with
DataSetSelect.

Postcondition

Note

3.5 Crypto Services

3.5.1 Encipher
Name Encipher

Description The Encipher function encrypts a transmitted plain text. The detailed behaviour
of this function depends on the protocol of the DID. Refer to [TR-03112-7] for
protocol specifications and in particular the specification of the “Generic
cryptography” protocol in Section 3.5 of [TR-03112-7].

Invocation
parameters

Invocation of the Encipher function.

Bundesamt für Sicherheit in der Informationstechnik 57

Name Description

ConnectionHandle Contains a handle with which the connection to a card
application is addressed.

DIDScope Resolves any ambiguity between local and global
DIDs with the same name.

DIDName Contains the name of the DID which is used for
encryption.

PlainText Contains the plain text which is to be encrypted.

Return

Return of the Encipher function.

Name Description

dss:Result Contains the status information and the errors of an
executed action. This element is described in more detail
below.

CipherText Contains the cipher text if it was possible to encrypt the
plain text.

Status information and errors in Encipher (also refer to [TR-03112-1] Sections
4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#namedEntityNotFound

• /resultminor/sal#protocolNotRecognized

• /resultminor/sal#inappropriateProtocolForAction

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/sal#insufficientResources

• /resultminor/dp#communicationFailure

In addition, other protocol specific error messages MAY
exist.

ResultMessage MAY contain more detailed information on the error
which occurred if required.

58 Bundesamt für Sicherheit in der Informationstechnik

Precondition A connection to a card application has been established with
CardApplicationConnect.

Postcondition

Note

3.5.2 Decipher
Name Decipher

Description The Decipher function decrypts a given cipher text. The detailed behaviour of
this function depends on the protocol of the DID. Refer to [TR-03112-7] for
protocol specifications and in particular the specification of the “Generic
cryptography” protocol in Section 3.5 of [TR-03112-7].

Invocation
parameters

Invocation of the Decipher function.

Name Description

ConnectionHandle Contains a handle with which the connection to a card
application is addressed (also refer to page
ConnectionHandle).

DIDScope Resolves any ambiguity between local and global DIDs
with the same name.

DIDName Contains the name of the DID which is to be used for
decryption.

CipherText Contains the cipher text which is to be decrypted.

Return

Return of the Decipher function.

Name Description

Bundesamt für Sicherheit in der Informationstechnik 59

dss:Result Contains the status information and the errors of
an executed action. This element is described in
more detail below.

PlainText Contains the plain text if decryption was possible.

Status information and errors in Decipher (also refer to [TR-03112-1] Sections
4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#namedEntityNotFound

• /resultminor/sal#protocolNotRecognized

• /resultminor/sal#inappropriateProtocolForAction

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/sal#insufficientResources

• /resultminor/dp#communicationFailure

In addition, other protocol specific error messages MAY
exist.

ResultMessage MAY contain more detailed information on the error
which occurred if required.

Precondition A connection to a card application has been established with
CardApplicationConnect.

Postcondition

Note If additional authentication steps are necessary for access to the stated DID, these
MAY be implicitly initiated.

3.5.3 GetRandom
Name GetRandom

Description The GetRandom function returns a random number which is suitable for
authentication with the DID addressed with DIDName. The detailed behaviour of
this function depends on the protocol of the DID. Refer to [TR-03112-7] for
protocol specifications.

60 Bundesamt für Sicherheit in der Informationstechnik

Invocation
parameters

Invocation of the GetRandom function.

Name Description

ConnectionHandle Contains a handle with which the connection to a
card application is addressed.

DIDScope Resolves any ambiguity between local and global
DIDs with the same name.

DIDName Contains the name of the differential identity (unique
with respect to the scope) which determines the
details of the random number generation.

Return

Return of the GetRandom function.

Name Description

dss:Result Contains the status information and the errors of an
executed action. This element is described in more detail
below.

Random Contains the returned random number if it was possible to
generate a number.

Bundesamt für Sicherheit in der Informationstechnik 61

Status information and errors in GetRandom (also refer to [TR-03112-1]
Sections 4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#namedEntityNotFound

• /resultminor/sal#protocolNotRecognized

• /resultminor/sal#inappropriateProtocolForAction

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/sal#insufficientResources

• /resultminor/dp#communicationFailure

In addition, other protocol specific error messages MAY
exist.

ResultMessage MAY contain more detailed information on the error which
occurred if required.

Precondition A connection to a card application has been established with
CardApplicationConnect.

Postcondition

Note

3.5.4 Hash
Name Hash

Description The Hash function calculates the hash value of a transmitted message. The
detailed behaviour of this function depends on the protocol of the DID. Refer to
[TR-03112-7] for protocol specifications and in particular the specification of the
“Generic cryptography” protocol in Section 3.5 of [TR-03112-7].

Invocation
parameters

Invocation of the Hash function.

62 Bundesamt für Sicherheit in der Informationstechnik

Name Description

ConnectionHandle Contains a handle with which the connection to a card
application is addressed (also refer to page 22).

DIDScope Resolves any ambiguity between local and global DIDs
with the same name.

DIDName Contains the name of the DID which should be used to
create the hash value.

Message Contains the message for which the hash value is to be
calculated.

Return

Return of the Hash function.

Name Description

dss:Result Contains the status information and the errors of an executed
action. This element is described in more detail below.

Hash Contains the calculated hash value if it was possible to calculate
a value.

Status information and errors in Hash (also refer to [TR-03112-1] Sections 4.1
and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#namedEntityNotFound

• /resultminor/sal#protocolNotRecognized

• /resultminor/sal#inappropriateProtocolForAction

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/sal#insufficientResources

• /resultminor/dp#communicationFailure

In addition, other protocol specific error messages MAY
exist.

ResultMessage MAY contain more detailed information on the error
which occurred if required.

Bundesamt für Sicherheit in der Informationstechnik 63

Precondition A connection to a card application has been established with
CardApplicationConnect.

Postcondition

Note

3.5.5 Sign
Name Sign

Description The Sign function signs a transmitted message. The detailed behaviour of this
function depends on the protocol of the DID. Refer to [TR-03112-7] for protocol
specifications and in particular the specification of the “Generic cryptography”
protocol in Section 3.5 of [TR-03112-7].

Invocation
parameters

Invocation of the Sign function.

Name Description

ConnectionHandle Contains a handle with which the connection to a card
application is addressed (also refer to page 22).

DIDScope Resolves any ambiguity between local and global DIDs
with the same name.

DIDName Contains the name of the differential identity with
which the transmitted message should be signed.

Message Contains the data which are to be signed. It MAY be
determined with the respective protocol specifications
whether a hash value has to be calculated on the basis
of the data and which padding process is to be used
(also refer to [TR-03112-7]).

64 Bundesamt für Sicherheit in der Informationstechnik

Return

Return of the Sign function.

Name Description

dss:Result Contains the status information and the errors of an executed
action. This element is described in more detail below.

Signature Contains the signature if successful.

Status information and errors in Sign (also refer to [TR-03112-1] Sections 4.1
and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#namedEntityNotFound

• /resultminor/sal#protocolNotRecognized

• /resultminor/sal#inappropriateProtocolForAction

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/sal#insufficientResources

• /resultminor/dp#communicationFailure

In addition, other protocol specific error messages MAY
exist.

ResultMessage MAY contain more detailed information on the error which
occurred if required.

Precondition A connection to a card application has been established with
CardApplicationConnect.

Postcondition

Note

3.5.6 VerifySignature
Name VerifySignature

Description The VerifySignature function verifies a digital signature. The detailed
behaviour of this function depends on the protocol of the DID. Refer to
[TR-03112-7] for protocol specifications and in particular the specification of the
“Generic cryptography” protocol in Section 3.5 of [TR-03112-7].

Bundesamt für Sicherheit in der Informationstechnik 65

Invocation
parameters

Invocation of the VerifySignature function.

Name Description

ConnectionHandle Contains a handle with which the connection to a
card application is addressed (also refer to page 22).

DIDScope Resolves any ambiguity between local and global
DIDs with the same name.

DIDName Contains the name of the differential identity to be
used for verifying the signature.

Signature Contains the signature which is to be verified.

Message Contains the signed message if not already contained
in the signature.

Return

Return of the VerifySignatureResponse function.

Name Description

dss:Result Contains the status information and the errors of an
executed action. This element is described in more detail
below.

66 Bundesamt für Sicherheit in der Informationstechnik

Status information and errors in VerifySignature (also refer to
[TR-03112-1] Sections 4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#namedEntityNotFound

• /resultminor/sal#protocolNotRecognized

• /resultminor/sal#inappropriateProtocolForAction

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/sal#insufficientResources

• /resultminor/dp#communicationFailure

In addition, other protocol specific error messages MAY
exist.

ResultMessage MAY contain more detailed information on the error which
occurred if required.

Precondition A connection to a card application has been established with
CardApplicationConnect.

Postcondition

Note

3.5.7 VerifyCertificate
Name VerifyCertificate

Description The VerifyCertificate function validates a given certificate. The detailed
behaviour of this function depends on the protocol of the DID. Refer to
[TR-03112-7] for protocol specifications and in particular the specification of the
“Generic cryptography” protocol in Section 3.5 of [TR-03112-7].

Bundesamt für Sicherheit in der Informationstechnik 67

Invocation
parameters

Invocation of the VerifyCertificate function.

Name Description

ConnectionHandle Contains a handle with which the connection to a card
application is addressed (also refer to page 22).

RootCert Optionally contains a reference to the root key with
which the certificate is to be verified. If this root key is
provided on the card and can be selected with the
CAR data object in the transferred CV certificate,
explicit statement of the root key MAY be omitted.

DIDScope Resolves any ambiguity between local and global
DIDs with the same name.

CertificateType MAY state the type of the certificate which is to be
verified. Especially the following certificate types are
defined:

 urn:ietf:rfc:3280 – for X.509 public key
certificates in accordance with [RFC3280]

 urn:ietf:rfc:3281 – for X.509-based attribute
certificates in accordance with [RFC3281]

 urn:iso:std:iso-iec:7816:-8:tech:certificate:
<aid>:<cpi> - for a card variable certificate
according to [ISO7816-8], whereby <aid>
contains the application identifier of a registered
card application and <cpi> a corresponding
certificate profile identifier (tag '5F29').

Certificate Contains the certificate which is to be verified.

68 Bundesamt für Sicherheit in der Informationstechnik

Return

Return of the VerifyCertificate function.

Name Description

dss:Result Contains the status information and the errors of
an executed action. This element is described in
more detail below.

Status information and errors in VerifyCertificate (also refer to
[TR-03112-1] Sections 4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#namedEntityNotFound

• /resultminor/sal#invalidKey

• /resultminor/sal#invalidSignature

• /resultminor/sal#protocolNotRecognized

• /resultminor/sal#inappropriateProtocolForAction

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/sal#insufficientResources

• /resultminor/dp#communicationFailure

In addition, other protocol specific error messages MAY
exist.

ResultMessage MAY contain more detailed information on the error which
occurred if required.

Precondition A connection to a card application has been established with
CardApplicationConnect.

Postcondition

Note

3.6 Differential Identity Services

3.6.1 DIDList
Name DIDList

Bundesamt für Sicherheit in der Informationstechnik 69

Description The DIDList function returns a list of the existing DIDs in the card application
addressed by the ConnectionHandle or the
ApplicationIdentifier-element within the Filter.

Invocation
parameters

Invocation of the DIDList function.

Name Description

Connection
Handle

Contains a handle with which the connection to a card
application is addressed (also refer to page 22).

Filter With the optional Filter element it is possible to control
what kind of DIDs are to be returned. The detailed structure
of the Filter-element is explained below.

The Filter-element MAY be part of DIDList and allows to filter what kind
of DIDs are to be listed.

Name Description

ApplicationIdentifier Allows specifying an application identifier. If
this element is present all DIDs within the
specified card application are returned no
matter which card application is currently
selected.

ObjectIdentifier Allows specifying a protocol OID (cf.
[TR-03112-7]) such that only DIDs which
support a given protocol are listed.

ApplicationFunction Allows filtering for DIDs, which support a
specific cryptographic operation. The bit
string is coded as the
SupportedOperations-element in
[ISO7816-15].

70 Bundesamt für Sicherheit in der Informationstechnik

Return

Return of the DIDList function.

Name Description

dss:Result Contains the status information and the errors of an
executed action. This element is described in more detail
below.

DIDNameList Contains the list of the names of the differential identities
as specified by the Filter-element.

DIDNameList is part of DIDListResponse.

Name Description

DIDName Contains the name of the differential identity.

Status information and errors in DIDList (also refer to [TR-03112-1] Sections
4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/dp#communicationFailure

ResultMessage MAY contain more detailed information on the error
which occurred if required.

Precondition A connection to a card application has been established with
CardApplicationConnect.

Postcondition

Note The DIDs in a card application are contained in the application capability
description (also refer to [ISO24727-2]), in a [ISO7816-15] structure on the card
or the CardInfo file.

Bundesamt für Sicherheit in der Informationstechnik 71

3.6.2 DIDCreate
Name DIDCreate

Description The DIDCreate function creates a new differential identity in the card
application addressed with ConnectionHandle.

Invocation
parameters

Invocation of the DIDCreate function.

Name Description

ConnectionHandle Contains a handle with which the connection to a card
application is addressed (refer to page 22).

DIDName Contains the name of the differential identity.

DIDUpdateData Contains information which is necessary for generating
a DID with the protocol stated as an attribute. The
DIDUpdateDataType serves as a generic template
for the definition of DIDUpdateData-elements for
specific authentication protocols (refer to
[TR-03112-7]). This type is defined as follows:
<complexType name="DIDUpdateDataType"
abstract="true">
 <complexContent>
 <extension base="anyType">
<attribute name="Protocol" type="anyURI"
use="required"/>
 </extension>
 </complexContent>
</complexType>

The detailed structure depends on the authentication
protocol (refer to [TR-03112-7]).

DIDACL Contains an access control list for the DID. Further
details on the AccessControlListType are given
on page 31.

72 Bundesamt für Sicherheit in der Informationstechnik

Return

Return of the DIDCreate function.

Name Description

dss:Result Contains the status information and the errors of an executed
action. This element is described in more detail below.

Status information and errors in DIDCreate (also refer to [TR-03112-1] Sections
4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#nameExists

• /resultminor/sal#protocolNotRecognized

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/sal#insufficientResources

• /resultminor/dp#communicationFailure

In addition, other protocol specific error messages MAY
exist.

ResultMessage MAY contain more detailed information on the error
which occurred if required.

Precondition A connection to a card application has been established with
CardApplicationConnect.

Postcondition The corresponding differential identity is available on the eCard.

Note The newly created DID MUST be noted in the application capability description
(also refer to [ISO24727-2]), in a [ISO7816-15] structure on the card or the
CardInfo file.

With this function no optional DIDScope parameter is provided intentionally.
Only one DID can be created in the currently selected card application. The "alpha
card application" must therefore be selected to create a global DID.

Information on whether this is a global or local DID is given implicitly by the card
application. DIDs in the "alpha card application" are global – DIDs in other card
applications are local.

3.6.3 DIDGet
Name DIDGet

Description The public information for a DID is read with the DIDGet function.

Bundesamt für Sicherheit in der Informationstechnik 73

Invocation
parameters

Invocation of the DIDGet function.

Name Description

ConnectionHandle Contains a handle with which the connection to a
card application is addressed (also refer to page 22).

DIDScope Resolves any ambiguity between local and global
DIDs with the same name.

DIDName Contains the name of the DID for which the available
information should be read from the eCard.

Return

Return of the DIDGet function.

Name Description

dss:Result Contains the status information and the errors of an
executed action. This element is described in more detail
below.

DIDStructure Contains the publicly available information for this DID.
The structure of the DIDStructure is explained below.

74 Bundesamt für Sicherheit in der Informationstechnik

The DIDStructure-element is part of DIDGetResponse and contains the
recoverable information of a DID.

Name Description

DIDName Is the name of the DID, which is used to address the DID
within the calls defined in this document.

DIDScope Indicates whether the scope of the DID is local or
global. The DIDScopeType is defined as follows:
<simpleType name="DIDScopeType">

<restriction base="string">
<enumeration value="local" />
<enumeration value="global" />

</restriction>
</simpleType>

If the scope is local the DID may only be accessed
within its specific card application. If the sope is global
the DID is part of the alpha-card-application and may be
accessed in all card applications of a given eCard.

Authenticated Indicates whether the DID is currently authenticated.

Bundesamt für Sicherheit in der Informationstechnik 75

DIDMarker Contains the characteristic information of a DID. The
DIDAbstractMarkerType serves as a generic
template for the definition of Marker-elements for
specific authentication protocols (refer to [TR-03112-7]).
This type is defined as follows:
<complexType name="DIDAbstractMarkerType"
abstract="true">
 <complexContent>
 <extension base="anyType">
<attribute name="Protocol" type="anyURI"
use="required"/>
 </extension>
 </complexContent>
</complexType>

The required Protocol-attribute14 specifies the
authentication protocol of the DID and the concrete
specification of the child elements of DIDMarker
depends on the individual protocol specifications (refer to
[TR-03112-7]). Note that the protocol identifies the used
cryptographic protocol including the used commands as
well as the secure messaging to be used after successful
completion of the cryptographic protocol.

DIDQualifier The DIDQualifier MAY be part of a DID, if and only
if the protocol specification (refer to [TR-03112-7])
defines the precise semantic of the DIDQualifier for
a specific authentication protocol. The structure of the
DIDQualifierType is defined on page 70.

Status information and errors in DIDGet (also refer to [TR-03112-1] Sections
4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#namedEntityNotFound

• /resultminor/sal#protocolNotRecognized

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/dp#communicationFailure

In addition, other protocol specific error messages MAY
exist.

ResultMessage MAY contain more detailed information on the error which
occurred if required.

Precondition A connection to a card application has been established with
CardApplicationConnect.

14 Note that the Protocol-attribute is mandatory and hence there is no need for an explicit Protocol-element as in
[ISO24727-3].

76 Bundesamt für Sicherheit in der Informationstechnik

Postcondition

Note The information about a DID which can be determined with DIDGet is stated in
the application capability description (also refer to [ISO24727-2]), in a
[ISO7816-15] structure on the card or the CardInfo file.

3.6.4 DIDUpdate
Name DIDUpdate

Description The DIDUpdate function creates a new key (marker) for the DID addressed
with DIDName.

Invocation
parameters

Invocation of the DIDUpdate function.

Name Description

ConnectionHandle Contains a handle with which the connection to a
card application is addressed.

DIDName Contains the name of the DID for which a new key
(marker) is to be generated or transferred.

DIDUpdateData Contains the data necessary for renewing the DID.
The structure of the generic
DIDUpdateDataType template is shown on page
72. The details of the DIDUpdataData-element
depend on the protocol under consideration (also
refer to [TR-03112-7]).

Return

Return of the DIDUpdate function.

Name Description

dss:Result Contains the status information and the errors of an
executed action. This element is described in more
detail below.

Bundesamt für Sicherheit in der Informationstechnik 77

Status information and errors in DIDUpdate (also refer to [TR-03112-1]
Sections 4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#namedEntityNotFound

• /resultminor/sal#protocolNotRecognized

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/sal#insufficientResources

• /resultminor/dp#communicationFailure

In addition, other protocol specific error messages MAY
exist.

ResultMessage MAY contain more detailed information on the error
which occurred if required.

Precondition A connection to a card application has been established with
CardApplicationConnect.

Postcondition The key material of the stated differential identity was renewed.

Note If the information of the DIDMarker or DIDQualifier structure is changed
when the DID is renewed, the application capability description (also refer to
[ISO24727-2]), the [ISO7816-15] structure on the card or the CardInfo file
MUST be updated accordingly.

With this function no optional DIDScope parameter is provided intentionally.
Only a DID in the currently selected card application MAY be renewed. The
"alpha card application" MUST therefore be selected to renew a global DID.

3.6.5 DIDDelete
Name DIDDelete

Description The DIDDelete function deletes the DID addressed with DIDName.

Invocation
parameters

Invocation of the DIDDelete function.

Name Description

ConnectionHandle Contains a handle with which the connection to a
card application is addressed (also refer to page 22).

78 Bundesamt für Sicherheit in der Informationstechnik

DIDName Contains the name of the DID which is to be
deleted.

Return

Return of the DIDDelete function.

Name Description

dss:Result Contains the status information and the errors of
an executed action. This element is described in
more detail below.

Status information and errors in DIDDelete (also refer to [TR-03112-1]
Sections 4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#namedEntityNotFound

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/dp#communicationFailure

In addition, other protocol specific error messages MAY
exist.

ResultMessage MAY contain more detailed information on the error
which occurred if required.

Precondition A connection to a card application has been established with
CardApplicationConnect.

Postcondition The DID has been deleted.

Note The information about the DID MUST be deleted in the application capability
description (also refer to [ISO24727-2]), the [ISO7816-15] structure on the card
or the CardInfo file.

With this function no optional DIDScope parameter is provided intentionally. It
is only possible to delete DIDs in the currently selected card application. If a
global DID is to be selected, the "alpha card application" MUST be selected.

3.6.6 DIDAuthenticate
Name DIDAuthenticate

Description The DIDAuthenticate function can be used to execute an authentication
protocol using a DID addressed by DIDName.

Bundesamt für Sicherheit in der Informationstechnik 79

Invocation
parameters

Invocation of the DIDAuthenticate function.

Name Description

ConnectionHandle Contains a handle with which the connection to a
card application is addressed (also refer to page 22).

DIDScope Resolves any ambiguity between local and global
DIDs with the same name.

DIDName Contains the name of the DID which is to be used for
authentication. The authentication protocol to be used
is determined by the mandatory Protocol-attribute
element in the
AuthenticationProtocolData-element
below, which corresponds to the Protocol-attribute
in the DIDMarker-element of the
DIDStructure-element (also refer to page 76).

80 Bundesamt für Sicherheit in der Informationstechnik

Authentication
ProtocolData

Contains the data necessary for the respective
authentication protocol. The structure of the
DIDAuthenticationDataType is specified on
the basis of the protocol (also refer to [TR-03112-7]).

The DIDAuthenticationDataType serves as a
generic template for the definition of protocol
specific authentication protocol data elements (refer
to [TR-03112-7]). This type is defined as follows:
<complexType name="DIDAbstractMarkerType"
abstract="true">
 <complexContent>
 <extension base="anyType">
<attribute name="Protocol" type="anyURI"
use="required"/>
 </extension>
 </complexContent>
</complexType>

The required Protocol-attribute specifies the
authentication protocol of the DID; the concrete
specification of the child elements of
AuthenticationProtocolData depends on
the individual protocol specifications (refer to
[TR-03112-7]). Note that the protocol identifies the
used cryptographic protocol including the used
commands as well as the secure messaging to be used
after successful completion of the cryptographic
protocol.

SAMConnection
Handle

MAY address a connection to a card application,
which serves as Security Access Module (SAM). The
detailed role of the SAM within the authentication
protocol MUST be defined within the specification of
the authentication protocol.

Return

Return of the DIDAuthenticate function.

Name Description

dss:Result Contains the status information and the
errors of an executed action. This element is
described in more detail below.

Bundesamt für Sicherheit in der Informationstechnik 81

Authentication
ProtocolData

Contains the data necessary for the
respective authentication protocol. The
structure of the
DIDAuthenticationDataType is
explained. Details depend on the
authentication protocol (refer to
[TR-03112-7]).

Status information and errors in DIDAuthenticate (also refer to
[TR-03112-1] Sections 4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

• /resultmajor#nextRequest

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#namedEntityNotFound

• /resultminor/sal#protocolNotRecognized

• /resultminor/sal#inappropriateProtocolForAction

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/sal#insufficientResources

• /resultminor/dp#communicationFailure

In addition, other protocol specific error messages MAY
exist.

ResultMessage MAY contain more detailed information on the error
which occurred if required.

Precondition A connection to a card application has been established with
CardApplicationConnect.

Postcondition The respective security condition is set on the eCard after successful
authentication.

Note

3.7 Authorization service

3.7.1 ACLList
Name ACLList

Description The ACLList function returns the access control list for the stated target
object (card application, data set, DID).

82 Bundesamt für Sicherheit in der Informationstechnik

Invocation
parameters

Invocation of the ACLList function15.

Name Description

ConnectionHandle Contains a handle with which the connection to a
card application is addressed (also refer to page
[TR-03112-7]).

TargetName Contains the name of the target object (card
application, data set, DID) of which the access
control list should be returned. See below for
details.

The TargetName element is part of ACLList and ACLModify element.

Name Description

DataSetName Contains the name of the data set.

DIDName Contains the name of the DID.

CardApplicationName Contains the name of the card application in
the form of an application identifier.

15 Note that ACLList in [ISO24727-3] has an additional parameter TargetType. However this parameter is
superfluous, because the type of the target is unambiguously implied by the internal structure of the
TargetName-parameter. This change will be proposed for a forthcoming defect report of [ISO24727-3].

Bundesamt für Sicherheit in der Informationstechnik 83

Return parameters

Return of the ACLList function.

Name Description

dss:Result Contains the status information and the errors of an
executed action. This element is described in more
detail below.

TargetACL Contains the access control list for the required target
object. Details on the AccessControlListType
are given on page 31.

Status information and errors in ACLList (also refer to [TR-03112-1]
Sections 4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#namedEntityNotFound

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/dp#communicationFailure

ResultMessage MAY contain more detailed information on the error
which occurred if required.

Precondition A connection to a card application has been established with
CardApplicationConnect.

Postcondition

Note The access control information is contained in the application capability
description (also refer to [ISO24727-2]), the [ISO7816-15] structure on the
card or the CardInfo file.

3.7.2 ACLModify
Name ACLModify

Description An access rule in the access control list is modified with the ACLModify
function.

84 Bundesamt für Sicherheit in der Informationstechnik

Invocation
parameters

Invocation of ACLModify16.

Name Description

ConnectionHandle Contains a handle with which the connection to a
card application is addressed.

TargetName Contains the name of the target object (card
application, data set, DID) of which the access
control list should be modified (refer to page 83
for details.

CardApplicationSe
rviceName17

Contains the service name of a card application.

ActionName Contains the name of the action for which the
access rules should be modified (for details refer
to page 31).

SecurityCondition Contains the security condition for the access
rule to be modified (for details refer to page 31).

Return parameters

Return of the ACLModify function.

Name Description

dss:Result Contains the status information and the errors of an
executed action. This element is described in more detail
below.

16 Note that ACLModify in [ISO24727-3] has an additional parameter TargetType. However this parameter is
superfluous, because the type of the target is unambiguously implied by the internal structure of the
TargetName-parameter. This change will be proposed for a forthcoming defect report of [ISO24727-3].

17 See footnote on page 32.

Bundesamt für Sicherheit in der Informationstechnik 85

Status information and errors in ACLModify (also refer to [TR-03112-1]
Sections 4.1 and 4.2).

Name Error codes

ResultMajor • /resultmajor#ok

• /resultmajor#error

ResultMinor • /resultminor/al/common#incorrectParameter

• /resultminor/sal#namedEntityNotFound

• /resultminor/sal#notInitialized

• /resultminor/sal#securityConditionNotSatisfied

• /resultminor/sal#insufficientResources

• /resultminor/dp#communicationFailure

ResultMessage MAY contain more detailed information on the error
which occurred if required.

Precondition A connection to a card application has been established with
CardApplicationConnect.

Postcondition The access control information for the stated target object has been changed.

Note The modified access control information must be updated in the application
capability description (also refer to [ISO24727-2]), the [ISO7816-15] structure
on the card or the CardInfo file.

86 Bundesamt für Sicherheit in der Informationstechnik

4 CardInfoFiles

A general requirement for an implementation of the [ISO24727-3] interface is that generic function
invocations on the service access interface ("action request" in Figure 2) must be mapped to card-specific
commands (APDUs which are sent in Figure 2 as "generic requests" to the generic card interface defined in
[ISO24727-2]).

Figure 2: ISO/IEC 24727-Architecture

For example, when the Sign function is invoked (refer to Figure 3 and Section 3.5.5) it is necessary to
determine the specific key reference (and if necessary the algorithm identifier) from the transferred
DIDName which must be used in a MANAGE SECURITY ENVIRONMENT command before the signature
can be generated with the PSO:COMPUTE DIGITAL SIGNATURE command.

Bundesamt für Sicherheit in der Informationstechnik 87

Figure 3: Mapping of SAL-function "Sign" to APDUs

There are three basic options to realize this mapping:

1. The mapping rule is encoded for a specific card in the source code of the smart card middleware and
fixed at compilation time.

2. The information required for the mapping is available on the card – e.g. in form of the application
capability description (ACD) in accordance with [ISO24727-2] and/or a cryptographic information
application (CIA) in accordance with [ISO7816-15] – and is read from there and used for the
mapping.

3. The information required for the mapping is not available on the card and is supplied to the smart
card middleware as structured information in the form of XML-based CardInfo files.

As the executable code must be adapted for each new card requiring support in the first approach and it may
therefore be necessary to re-evaluate the smartcard middleware, this strategy MUST NOT be used for the
implementation of the eCard-API-Framework.

The second alternative has the general advantage that the necessary information is provided on the card
directly and does not have to be supplied to a middleware solution in another manner. For this reason this
version has also been taken for standardisation of [ISO24727-2] and SHOULD be supported by the
eCard-API-Framework in the long term to ensure international interoperability. Unfortunately this approach
is not suitable for almost all cards of importance for the eCard-strategy (e.g. electronic health card and
almost all signature cards), as these cards do not feature either an ACD or a comprehensive CIA. For this
reason in particular the third version MUST be implemented promptly – at least as long as the necessary
information is not available on the cards in the form of ACD and/or CIA structures – when the
eCard-API-Framework is implemented.

To ease the joint implementation of the second and the third strategy, the common features and differences
are considered more closely to make use of any synergies during implementation of both alternatives.

88 Bundesamt für Sicherheit in der Informationstechnik

In both versions the information necessary for depiction of the generic invocations on specific card APDUs
must be determined (i.e. especially the description of the ApplicationCapabilities as in Annex A.6
or the application capability description of Section 6.2 of [ISO24727-2]). While with the second version this
information must be extracted in a comparatively complex manner from a CIA structure in accordance with
[ISO7816-15], with the third version they are directly available as an XML structure in the form required by
[ISO24727-3]. During the implementation of both versions it is therefore conceivable that internal objects for
card applications (services, differential identities, data sets etc.) are aligned with [ISO24727-3]-type
structures and that these can be alternatively "filled" by the CardCapabilities structure (also refer to
Annex A.5) and the ApplicationCapabilities structure (also refer to section 4.5) or by the analysis
of the ACD and CIA structures (also refer to [ISO24727-2]).

As in the third version an additional assignment between a currently available card and an XML-based
CardInfo file is necessary, a unique card type MUST be defined in this case (also refer to CardType in
Annex A.3), which is determined for a currently available card within the framework of the recognition
process (also refer to CardIdentification in Annex A.4). On the other hand it is not essential with the
second version that unique card types exist and that these have to be recognised, as all necessary information
is contained on the card itself. To enable protection against attacks by manipulated CardInfo structures, it
MUST be possible to protect a CardInfo file either fully or partially by a digital signature (also refer to the
Signature element in Annex A.7).

The following definition of the CardInfo-structure is based on Annex E of [CEN15480-3].

4.1 CardInfoType

The CardInfo structure may be used for the specification of European Citizen Card profiles [CEN15480-4]
and for the mapping of generic requests at the Service Access Layer to card-specific APDUs in case of
legacy cards, which are not equipped with appropriate ACD and CCD structures according to ISO/IEC
24727-2 (refer to Figure 3).

Each European Citizen Card profile SHOULD be described by a <CardInfo> element
<element name="CardInfo" type="iso:CardInfoType" />

of type CardInfoType which is defined as follows:
<complexType name="CardInfoType">
 <sequence>
 <element name="CardType" type="iso:CardTypeType" />
 <element name="CardIdentification" type="iso:CardIdentificationType" />
 <element name="CardCapabilities"
 type="iso:CardCapabilitiesType" maxOccurs="1" minOccurs="0" />
 <element name="ApplicationCapabilities"
 type="iso:ApplicationCapabilitiesType" maxOccurs="1" minOccurs="0" />
 <element name="Signature"
 type="ds:SignatureType" maxOccurs="unbounded" minOccurs="0" />
 </sequence>
 <attribute name="Id" type="ID" use="optional" />
 <attribute name="schemaVersion" type="token" use="optional" />
 </complexType>

<CardType> [required]

Contains a unique identifier for the card type and optionally further links to specification documents.
Further details are explained in section 4.2.

<CardIdentification> [required]

Allows to determine the type of a given card by traversing the decision tree (refer to Figure 4) and
checking whether the characteristic features are as expected. Further details are explained in section 4.3.

Bundesamt für Sicherheit in der Informationstechnik 89

<CardCapabilities> [optional]

Allows specifying the capabilities of the card. If the card is fully conform to ISO/IEC 7816 this element
MAY be omitted. Further details are explained in section 4.4.

<ApplicationCapabilities> [optional]

Allows specifying the card-applications on the card and SHOULD be used to realize the mapping from
SAL-calls to card-specific APDUs (refer to Figure 3). If the necessary information for this mapping is
available on the card in adequate CIA-information structures according to ISO/IEC 7816-15 (see Section
7.5) this element MAY be omitted. Further details are explained in section 4.5.

<Signature> [optional]

Is used to protect the integrity and authenticity of (parts of) the CardInfo-element. The
ds:SignatureType is defined in [RFC3275]. Further details are explained in section 4.6.

<schemaVersion> [optional]

Contains the version of the schema used for this cardinfo file. The identifier for the schema defined in
this version of this document is "1.1". If this element is not present, version 1.1 of the schema SHOULD
be assumed.

4.2 CardTypeType

The <CardType> element within the CardInfo-element (cf. Section 4.1) is of type CardTypeType
and contains a unique identifier for the card type and optionally further links to specification documents.

It is specified as follows:
<complexType name="CardTypeType">
 <sequence>
 <element name="ProfilingInfo" maxOccurs="1" minOccurs="0">
 <complexType>
 <sequence>
 <element name="BasisSpecification" type="anyURI" />
 <element name="ProfilingRelation" type="iso:ProfilingType" />
 </sequence>
 </complexType>
 </element>
 <element name="ObjectIdentifier" type="anyURI" />
 <element name="SpecificationBodyOrIssuer"
 type="string" maxOccurs="1" minOccurs="0" />
 <element name="CardTypeName" type="string" maxOccurs="1" minOccurs="0" />
 <element name="Version" maxOccurs="1" minOccurs="0">
 <complexType>
 <sequence>
 <element name="Major" type="string" />
 <element name="Minor" type="string" maxOccurs="1" minOccurs="0" />
 <element name="SubMinor" type="string" maxOccurs="1" minOccurs="0" />
 </sequence>
 </complexType>
 </element>
 <element name="Status" type="string" maxOccurs="1" minOccurs="0" />
 <element name="Date" type="date" maxOccurs="1" minOccurs="0" />
 <element name="CardInfoRepository" type="anyURI" maxOccurs="1" minOccurs="0"/>
 <element name="Other" type="dss:AnyType" minOccurs="0"/>
 </sequence>
 <attribute name="Id" type="ID" use="optional" />
</complexType>

This type defines the following elements and attributes:

90 Bundesamt für Sicherheit in der Informationstechnik

<ProfilingInfo> [optional]

If this element is present it containsinformation about a basic specification
(<BasisSpecification> element) which is extended or redefined (cf.
<ProfilingRelation> element below) by the present CardInfo structure. Using this element it is
possible to re-use existing CardInfo-structures in a modular approach.

<ObjectIdentifier> [required]

This element MUST contain the unique identifier of the card type, which MAY be the object identifier
of a profile defined in [CEN15480-4].

<SpecificationBodyOrIssuer> [optional]

This element is used to specify the card issuer or the organization, which is responsible for the
specification.

<CardTypeName> [optional]

This element contains the name of the card type.

<Version> [optional]

This element contains the version number of the card type.

<Status> [optional]

This element contains information about the state of the present CardInfo file (e.g. ‘draft’).

<Date> [optional]

This element contains the date of creation of the CardInfo file.

<CardInfoRepository> [optional]

If present this element contains the address of a CardInfo-repository, which may provide related
CardInfo- files.

<Other> [optional]

This element MAY contain some additional element, which structure is defined by some other
specification.

4.2.1 ProfilingType
The <ProfilingRelation> element is of type ProfilingType and describes the relation between
the basic specification and the present CardInfo file.
<simpleType name="ProfilingType">
 <restriction base="string">
 <enumeration value="extends" />
 <enumeration value="redefines" />
 </restriction>
</simpleType>

The two cases have got the following meaning:

 extends – indicates that the present CardInfo file is just an extension of the basic specification. All
definitions in the basic specification remain valid and the new specifications in the CardInfo file just
extend them (e.g. a new card application).

 redefines – indicates that the elements of the CardInfo file overwrite the according elements of
the basic specification. Elements of the basic specification not appearing in the CardInfo file remain
valid.

Bundesamt für Sicherheit in der Informationstechnik 91

4.3 CardIdentificationType

The <CardIdentification> element, which is part of the CardInfo-element (cf. Section 4.1), allows
to determine the type of a given card by traversing the decision tree (for an example see Figure 4) and
checking whether the characteristic features are as expected. An implementation of the eCard-API MUST
build its own decision tree based on the known CardInfo files.

The CardIdentification element MUST contain enough information to uniquely identify the card
type, i.e.at least relevant operation system features including version and personalization variant.

To facilitate fast recognition of cards, an implementation SHOULD check easily available features first, e.g.
ATR/ATS or EF.DIR/INFO. Therefore it is RECOMMENDED that authors of CardInfo files include these
features in the CardIdentification element.
<complexType name="CardIdentificationType">

<sequence>
<element name="ATR" maxOccurs="unbounded" minOccurs="0"

type="iso:ATRType" />
<element name="ATS" type="iso:ATSType" maxOccurs="1"

minOccurs="0" />
<element name="CharacteristicFeature" maxOccurs="unbounded"

minOccurs="0">
<complexType>

<sequence maxOccurs="unbounded" minOccurs="1">
<element name="CardCall"

type="iso:CardCallType" />
</sequence>

</complexType>
</element>
<element name="Other" type="dss:AnyType" minOccurs="0"/>

</sequence>
<attribute name="Id" type="ID" use="optional" />

</complexType>

<ATR> [optional, unbounded]

For contact-based smart cards this element contains, if present, information to the Answer To Reset18
(ATR) of the card, allowing the realisation of a preselection of the card type. Further details are
explained below.

<ATS> [optional]

In an analogous way this element contains, if present, information to the Answer To Select of a
contactless smart card, allowing the realisation of a preselection of the card type. Further details are
explained below.

<CharacteristicFeature> [optional, unbounded]

This element contains a list of card calls, which can be used to determine the card type. The elements of
the list are of type CardCallType. Further details are explained below.

<Other> [optional]

This element MAY contain some additional element, which structure is defined by some other
specification.

18 Because there are several protocols for contact smart cards (e.g. T=0 and T=1) which can be supported by the same
card it is possible that one card has several ATRs. All of these ATR elements could in principle be used for a
preselection of the card type (using a disjunction). In order to avoid interoperability problems it is
RECOMMENDED in this case to specify no ATR-element in the CardInfo-file, but only use explicit characteristic
features to identify the card type. If the card has no ATR, because it is a contact-less card for example, there MUST
NOT be specified an ATR-element.

92 Bundesamt für Sicherheit in der Informationstechnik

4.3.1 ATRType
The <ATR> element of type ATRType is part of the element <CardIdentification>. For further
information about the structure of the ATR see section 8 of [ISO7816-3].
<complexType name="ATRType">
 <sequence>
 <element name="TS" type="iso:ByteMaskType" maxOccurs="1" minOccurs="1" />
 <element name="T0" type="iso:ByteMaskType" maxOccurs="1" minOccurs="1" />
 <element name="InterfaceBytes">
 <complexType>
 <sequence>
 <element name="Tx1" type="iso:ATRInterfaceBytesType" />
 <element name="Tx2" type="iso:ATRInterfaceBytesType" />
 <element name="Tx3" type="iso:ATRInterfaceBytesType" />
 <element name="Tx4" type="iso:ATRInterfaceBytesType" />
 </sequence>
 </complexType>
 </element>
 <element name="HistoricalBytes" maxOccurs="1" minOccurs="0">
 <complexType>
 <sequence maxOccurs="15" minOccurs="0">
 <element name="Ti" type="iso:ByteMaskType" />
 </sequence>
 </complexType>
 </element>
 <element name="TCK" type="iso:ByteMaskType" maxOccurs="1" minOccurs="0" />
 </sequence>
</complexType>

<TS> [required]

The element <TS> describes the first byte of the communication. This element is as many others of type
ByteMaskType, which is explained below.

<T0> [required]

The element <T0> is of type ByteMaskType and describes the "format character" which indicates
the amount of historical bytes and the presence of the first interface bytes (TA1, TB1, TC1 and TD1).

<InterfaceBytes> [required]

This element contains the interface bytes which could be included in the ATR. The elements <Txi>,
i{1,2,3,4 } are of type ATRInterfaceBytesType. This type is explained below.

<HistoricalBytes> [optional]

This element contains the historical bytes as a sequence of at most 15 bytes. Each element <Ti> is of
type ByteMaskType (see below) which also describes the significant part of the byte to identify the
card type.

<TCK> [optional]

This element of type ByteMaskType MAY contain the check sum of all bytes of the ATR beginning
with T0.

4.3.2 ByteMaskType

The ByteMaskType consists of a hexadecimal value and a corresponding mask which results in the
significant part of the value when a logical AND is performed on value and mask.
<complexType name="ByteMaskType">

Bundesamt für Sicherheit in der Informationstechnik 93

 <sequence>
 <element name="Value" type="iso:ByteType" />
 <element name="Mask" type="iso:ByteType" />
 </sequence>
</complexType>

4.3.3 ByteType

The iso:ByteType in turn is defined to be hexBinary with a length of one byte. Unlike the builtin
byte-type this type allows to specify a byte of data in the common hexadecimal form and not as signed
integer in the range between -127 and 128.
<simpleType name="ByteType">

<restriction base="hexBinary">
<length value="1"/>

</restriction>
</simpleType>

If the whole byte is significant the mask 'FF' has to be used. To get the first half byte the mask has to be 'F0',
for the second half byte '0F'. If only the first bit is significant the mask would be '80' and so on.

4.3.4 ATRInterfaceBytesType

The type ATRInterfaceBytesType is used by the elements <Txi> of the element
<InterfaceBytes>. This type consists of four elements <Txi>, x{A,B,C,D}. Each of these elements
is of type ByteMaskType (see above) which also describes the significant part of the byte.
<complexType name="ATRInterfaceBytesType">
 <sequence>
 <element name="TAi" type="iso:ByteMaskType" maxOccurs="1" minOccurs="0" />
 <element name="TBi" type="iso:ByteMaskType" maxOccurs="1" minOccurs="0" />
 <element name="TCi" type="iso:ByteMaskType" maxOccurs="1" minOccurs="0" />
 <element name="TDi" type="iso:ByteMaskType" maxOccurs="1" minOccurs="0" />
 </sequence>
</complexType>

4.3.5 ATSType

The <ATS>19 element of type ATSType is part of the element <CardIdentification> and describes
the Answer To Select of contactless smart cards.
<complexType name="ATSType">
 <sequence>
 <element name="TL" type="iso:ByteMaskType" maxOccurs="1" minOccurs="1" />
 <element name="T0" type="iso:ByteMaskType" maxOccurs="1" minOccurs="1" />
 <element name="InterfaceBytes" type="iso:ATSInterfaceBytesType" />
 <element name="HistoricalBytes" maxOccurs="1" minOccurs="0">
 <complexType>
 <sequence maxOccurs="15" minOccurs="0">
 <element name="Ti" type="iso:ByteMaskType"/>
 </sequence>
 </complexType>
 </element>

19 If the card does not provide an ATS, because it is a contact-based card or an ISO/IEC 14443 Type B card, one
MUST NOT specify an ATS-element. In case of doubt it is RECOMMENDED to omit the ATS-element and
exclusively use explicit characteristic features for card identification.

94 Bundesamt für Sicherheit in der Informationstechnik

 <element name="CRC1" type="iso:ByteMaskType" maxOccurs="1" minOccurs="1" />
 <element name="CRC2" type="iso:ByteMaskType" />
 </sequence>
</complexType>

<TL> [required]

The element <TL> contains the length of the ATS including the TL byte itself but excluding CRC1 and
CRC2. This element is of type ByteMaskType which also describes the significant part of the byte.

<T0> [required]

The element <T0> contains the Frame Size for proximity Card Integer (FSCI) and also indicates the
presence of interface bytes in the ATS. This element is of type ByteMaskType which also describes
the significant part of the byte.

<InterfaceBytes> [required]

This element contains the interface bytes which could be included in the ATS. The element is of type
ATSInterfaceBytesType which is explained below.

<HistoricalBytes> [optional]

This element contains the historical bytes as a sequence of at most 15 bytes. Each element <Ti> is of
type ByteMaskType which also describes the significant part of the byte to identify the card type.

<CRC1>, <CRC2> [required]

These two elements of type ByteMaskType can contain the check sum of all bytes of the ATS
beginning with TL.

4.3.6 ATSInterfaceBytesType

The following type ATSInterfaceBytesType is used by the element <InterfaceBytes> of the
element <ATS>. This type consists of three elements <Tx1>, x{A,B,C}. Each of these elements is of type
ByteMaskType which also describes the significant part of the byte.
<complexType name="ATSInterfaceBytesType">
 <sequence>
 <element name="TA1" type="iso:ByteMaskType" maxOccurs="1" minOccurs="0" />
 <element name="TB1" type="iso:ByteMaskType" maxOccurs="1" minOccurs="0" />
 <element name="TC1" type="iso:ByteMaskType" maxOccurs="1" minOccurs="0" />
 </sequence>
</complexType>

4.3.7 CardCallType
A list of elements of the type CardCallType is used to describe the characteristic features of the card in
the <CardIdentification> element. While the CardCallType is defined in the protocol related
schema definition (see [TR-03112-7]) it is explained here to ease reading.
<complexType name="CardCallType">

<choice>
<sequence>

<element name="CommandAPDU" type="hexBinary" />
<element name="ResponseAPDU" type="iso:ResponseAPDUType"

maxOccurs="unbounded" minOccurs="1" />
</sequence>
<sequence>

<element name="APICall" type="dss:AnyType" />
<element name="APIResponse" type="dss:AnyType"

maxOccurs="unbounded" minOccurs="1" />

Bundesamt für Sicherheit in der Informationstechnik 95

</sequence>
</choice>

</complexType>

<CommandAPDU> [choice, required]

This element contains the command APDU to be sent to the card. For security reasons APDUs with
CLA values ‘0x’ or ‘1x’, x{0,…,9, A,…,F} and INS values ‘20’, ‘21’, ‘24’, ‘2C’, and ‘22’ SHOULD
NOT be used, because these values would correspond to the commands CHANGE REFERENCE
DATA, RESET RETRY COUNTER und MANAGE SECURITY ENVIRONMENT (see [ISO7816-4],
sections 7.5.6-7.5.11). With these commands an attacker could use the card identification to increase the
retry counter of the card which could result in a denial of service attack. Such commands MUST be
blocked if the <CharacteristicFeature> element is not signed by a trustworthy authority.

<ResponseAPDU> [choice, required, unbounded]

This element appears one or more times after a <CommandAPDU>-element and contains the possible
responses of the smart card to the command APDU. If the response corresponds to any of the given
value in the CardInfo file the current path in the decision tree will be followed until an accepted state is
reached. The <ResponseAPDU> is of type ResponseAPDUType, which is defined below.

<APICall> [choice, required]

This element MAY NOT appear within a <CharacteristicFeature>-element and contains an
arbitrary <APICall> defined in the present series of specifications.

<APIResponse> [choice, required, unbounded]

This element appears one or more times after an <APICall>-element and contains the possible
API-responses. As the <APICall>-element above the <APIResponse>-element MAY NOT appear
within a <CharacteristicFeature>-element.

4.3.8 ResponseAPDUType

The ResponseAPDU is of type ResponseAPDUType, which is defined (in ISO24727-Protocols.xsd) as
follows:
<complexType name="ResponseAPDUType">

<sequence>
<element name="Body" type="iso:DataMaskType" maxOccurs="1"

minOccurs="0" />
<element name="Trailer" type="hexBinary" />
<element ref="iso:Conclusion" maxOccurs="1" minOccurs="0"/>

</sequence>
</complexType>

<Body> [optional]

This element contains information related to the analysis of the response APDU. It is of type
DataMaskType, which is explained below.

<Trailer> [required]

This element relates to the expected status of the command and is equal to ‘9000’ in case of expected
success.

<Conclusion> [optional]

This element is used for the recognition of the state of a key object (cf. StateInfo in
[TR-03112-7]) for example and MAY NOT appear in a CardInfo-file.

96 Bundesamt für Sicherheit in der Informationstechnik

4.3.9 DataMaskType

The DataMaskType is used to describe the body of a response APDU. Because of the optional
<Tag>-element and choice between the terminal MatchingData-element or the recursive
DataObject-element, which is again of DataMaskType it is possible to handle arbitrarily nested TLV
structures. It is defined as follows:
<complexType name="DataMaskType">

<sequence>
<element name="Tag" type="hexBinary" maxOccurs="1" minOccurs="0" />
<choice>

<element name="MatchingData" type="iso:MatchingDataType"/>
<element name="DataObject" type="iso:DataMaskType" />

</choice>
</sequence>

</complexType>

<Tag> [optional]

This element contains the tag where the expected value or structured data object is stored.

<MatchingData> [choice]

This element contains a description of the data against which the response from the card shall be
matched. It is of type MatchingDataType, which is explained below.

<DataObject> [choice]

This element contains a further structured data object of type DataMaskType, which is returned by the
smart card. This element is – similarly to the element <Body> contained in the <ResponseAPDU>
element – of type DataMaskType, so that arbitrary deep nested TLV coded structures could be defined.

4.3.10 MatchingDataType

The MatchingDataType defines the structure of the terminal data against which the data from the card
shall be matched. It is defined as follows:
<complexType name="MatchingDataType">

<sequence>
<element name="Offset" type="hexBinary"

maxOccurs="1" minOccurs="0" />
<element name="Length" type="hexBinary"

maxOccurs="1" minOccurs="0" />
<element name="MatchingValue" type="hexBinary"/>
<element name="Mask" type="hexBinary"

maxOccurs="1" minOccurs="0" />
</sequence>
<attribute name="MatchingRule" type="iso:MatchingRuleType" use="optional" de-

fault="Equals" />
</complexType>

<Offset> [optional]

If present, this element contains an offset, which specifies a starting point at which the data from the
card shall be considered for matching. If the element is missing, the first byte of the data is used as
starting point.

<Length> [optional]

If present, this element contains the length of the data considered for matching. If this element is
missing, the entire data value is considered for comparison.

Bundesamt für Sicherheit in der Informationstechnik 97

<MatchingValue> [optional]

This element contains the value, which is expected to be equal to or contained in the value returned by
the smart card.

<Mask> [optional]

This element MAY contain a mask to perform a logical AND on the data returned by the eCard before it
is compared to the MatchingValue. By this way it is possible to filter out a specific part (e.g. single
bits) of the data. Refer also to the definition of the ByteMaskType.

MatchingRule [optional attribute]

This optional attribute indicates, whether the MatchingValue is expected to be equal (Equals) or
only contained (Contains) in the data returned from the card. It is of type MatchingRuleType.

4.3.11 MatchingRuleType

<simpleType name="MatchingRuleType">
<restriction base="string">

<enumeration value="Equals" />
<enumeration value="Contains" />

</restriction>
</simpleType>

If the MatchingRule attribute is missing the default value “Equals” is assumed.

4.4 CardCapabilitiesType

The <CardCapabilities> element of type CardCapabilitiesType is an optional part of the
<CardInfo> element and specifies the general capabilities of the card.

This information may be used to support cards which are not fully conforming to [ISO7816-4]. Furthermore
it is possible to specify requirements for cards and card profiles (refer to [CEN15480-4]).

If a card is fully conform to [ISO7816-4] this element is not needed for mapping SAL-requests to APDUs.
<complexType name="CardCapabilitiesType">

<sequence>
<element name="Interface" maxOccurs="unbounded"

minOccurs="0">
<complexType>

<complexContent>
<extension base="iso:RequirementsType">

<sequence>
<element name="Protocol" type="anyURI" />

</sequence>
</extension>

</complexContent>
</complexType>

</element>
<element name="EF.DIR" maxOccurs="1" minOccurs="0"

type="iso:FileRefReqType" />
<element name="EF.ATRorINFO" maxOccurs="1" minOccurs="0"

type="iso:EFATRorINFOType" />
<element name="Other" type="dss:AnyType" minOccurs="0"/>

</sequence>
<attribute name="Id" type="ID" use="optional" />

</complexType>

98 Bundesamt für Sicherheit in der Informationstechnik

<Interface> [optional, unbounded]

This element contains an identifier for a supported transport protocol. The element is an extension of the
RequirementsType and therefore contains an element <RequirementLevel> (see below).
Additionally it contains an element <Protocol> which holds a URI specifying the transport protocol.
The following protocols MAY be used:

• urn:iso:std:iso-iec:7816:-3:tech:protocols:T-equals-0
• urn:iso:std:iso-iec:7816:-3:tech:protocols:T-equals-1
• urn:iso:std:iso-iec:10536:tech:protocols:T-equals-2
• urn:iso:std:iso-iec:14443:-2:tech:protocols:Type-A
• urn:iso:std:iso-iec:14443:-2:tech:protocols:Type-B

<EF.DIR> [optional]

This element contains information about the EF.DIR according [ISO7816-4]. For details refer to the
definition of FileRefReqType.

<EF.ATRorINFO> [optional]

This element contains information about the EF.ATRorINFO according [ISO7816-4]. For details refer to
the definition of EFATRorINFOType.

<Other> [optional]

This element MAY contain some additional element, which structure is defined by some other
specification.

4.4.1 RequirementsType
The element <RequirementLevel> in the type RequirementsType specifies, whether the given
feature MUST be supported by the platform (‘PlatformMandatory’), MAY be supported by the
platform (‘PlatformOptional’), MUST be personalized (‘PersonalizationMandatory’) or
MAY be personalized (‘PersonalizationOptional’).
<complexType name="RequirementsType">
 <sequence maxOccurs="1" minOccurs="1">
 <element name="RequirementLevel"
 type="iso:BasicRequirementsType" maxOccurs="1" minOccurs="0"/>
 </sequence>
</complexType>

4.4.2 BasicRequirementsType

The type BasicRequirementsType is defined as follows:
<simpleType name="BasicRequirementsType">
 <restriction base="string">
 <enumeration value="PlatformMandatory" />
 <enumeration value="PlatformOptional" />
 <enumeration value="PersonalizationMandatory" />
 <enumeration value="PersonalizationOptional" />
 </restriction>
</simpleType>

4.4.3 FileRefReqType

The type FileRefReqType extends the RequirementsType by an element <Path> which is of type
PathType (see below):

Bundesamt für Sicherheit in der Informationstechnik 99

<complexType name="FileRefReqType">
 <complexContent>
 <extension base="iso:RequirementsType">
 <sequence>
 <element name="Path" type="iso:PathType" maxOccurs="1" minOccurs="0" />
 </sequence>
 </extension>
 </complexContent>
</complexType>

4.4.4 PathType

The type PathType is based on Amendment 2 to [ISO7816-15] and used to specify the path to a file or a
part of it:
<complexType name="PathType">
 <sequence>
 <choice>
 <element name="efIdOrPath" type="hexBinary" />
 <element name="TagRef">
 <complexType>
 <sequence>
 <element name="tag" type="hexBinary" />
 <element name="efIdOrPath"
 type="hexBinary" maxOccurs="1" minOccurs="0" />
 </sequence>
 </complexType>
 </element>
 <element name="AppFileRef">
 <complexType>
 <sequence>
 <element name="aid" type="hexBinary" />
 <element name="efIDOrPath" type="hexBinary" />
 </sequence>
 </complexType>
 </element>
 <element name="AppTagRef">
 <complexType>
 <sequence>
 <element name="aid" type="hexBinary" />
 <element name="tag" type="string" />
 <element name="efIdOrPath"
 type="hexBinary" maxOccurs="1" minOccurs="0" />
 </sequence>
 </complexType>
 </element>
 </choice>
 <element name="Index" type="hexBinary" maxOccurs="1" minOccurs="0" />
 <element name="Length" type="hexBinary" maxOccurs="1" minOccurs="0" />
 </sequence>
</complexType>

<efIdOrPath> [choice]

This element contains a file identifier or a path (as a sequence of file identifiers without separator) to a
file on a smart card. According to section 8.2.5 of [ISO7816-15] there are five cases to be differentiated:

• <efIdOrPath> is empty and no file is identified.

• <efIdOrPath> consists of one byte where the five most significant bits contain a short
file identifier. The other bits b1,…,b3 are zero.

100 Bundesamt für Sicherheit in der Informationstechnik

• <efIdOrPath> consists of exactly two bytes and contains an ordinary file identifier.

• <efIdOrPath> consists of an even number (>2) of bytes and contains an absolute or
relative path (a sequence of file identifiers without separator) to a file.

• <efIdOrPath> consists of an odd number (>1) of bytes and contains a “qualified path” to
a file as described in [ISO7816-4].

<TagRef> [choice]

This element consists of an element <tag> containing a tag encapsulating the addressed data and an
optional element <efIdOrPath> as described above.

<AppFileRef> [choice]

With this element it is possible to reference a file of a certain application on the card. It consists of an
element <aid> containing the identifier of the application and an element <efIdOrPath> as
described above.

<AppTagRef> [choice]

With this element it is possible to reference a data object encapsulated with a tag and stored in a card
application. It consists of an element <aid> containing the identifier of the application, an element
<tag> containing a tag where the addressed data is stored and an optional element <efIdOrPath> as
described above.

<Index> and <Length> [optional]

For these elements there are two cases to differentiate

• transparent file
In this case the optional element <Index> contains the offset in the READ BINARY
command (parameters P1/P2) and <Length> the parameter Le (see section 7.2.3 of
[ISO7816-4]).

• record oriented file
In this case the element <Index> contains the record number in the READ RECORD
command (see section 7.3.3 of [ISO7816-4]). The element <Length> will be ignored, if
present.

4.4.5 EFATRorINFOType

The element <EF.ATRorINFO> is of type EFATRorINFOType and is part of the CardCapabilitiesType. It
contains information about the (EF.) ATR / INFO and is not necessary for the mapping of SAL-requests to
APDUs, if the card is conforming to [ISO7816-4]. This element may also be used to specify requirements for
a card within a given profile.
<complexType name="EFATRorINFOType">
 <complexContent>
 <extension base="iso:FileRefReqType">
 <sequence>
 <element name="ISO7816-4-CardServiceData" maxOccurs="1"
 type="iso:ISO7816-4-CardServiceDataType" minOccurs="0" />
 <element name="Pre-Issuing-DO"
 type="iso:FileRefReqType" maxOccurs="1" minOccurs="0" />
 <element name="ISO7816-4-CardCapabilities" maxOccurs="1"
 type="iso:ISO7816-4-CardCapabilitiesType" minOccurs="0" />
 <element name="ImplicitlySelectedApplication"

Bundesamt für Sicherheit in der Informationstechnik 101

 type="iso:FileRefReqType" maxOccurs="1" minOccurs="0" />
 <element name="ExtendedLengthInfo"
 type="iso:ExtendedLengthInfoType" maxOccurs="1" minOccurs="0" />
 </sequence>
 </extension>
 </complexContent>
</complexType>

<ISO7816-4-CardServiceData> [optional]

This element contains information about the card service data as described in section 8.1.1.2.3 of
[ISO7816-4]. Details of the type ISO7816-4-CardServiceDataType are described below.

<Pre-Issuing-DO> [optional]

This element contains information about the path to manufacturer specific pre-issuing data (see section
8.1.1.2.6 of [ISO7816-4]). This element is not necessary if the card is conforming to [ISO7816-4]. For
details refer to the definition of FileRefReqType.

<ISO7816-4-CardCapabilities> [optional]

This element contains information about the card capabilities as described in section 8.1.1.2.7 of
[ISO7816-4]. For details refer to the definition of the ISO7816-4-CardCapabilitiesType.

<ImplicitlySelectedApplication> [optional]

This element contains information about an implicit selected application as described in section 8.1.1.2.2
of [ISO7816-4]. For details refer to the definition of FileRefReqType.

<ExtendedLengthInfo> [optional, unbounded]

This element contains information about the support of extended length. For details refer to the
definition of ExtendedLengthInfoType.

4.4.6 ISO7816-4-CardServiceDataType

The type ISO7816-4-CardServiceDataType is an extension of the FileRefReqType. It is used in the
definition of the EFATRorINFOType above.
<complexType name="ISO7816-4-CardServiceDataType">
 <complexContent>
 <extension base="iso:FileRefReqType">
 <sequence>
 <element name="Application-selection" maxOccurs="1" minOccurs="0">
 <complexType>
 <sequence>
 <element name="by-full-DF-name" type="iso:BitReqType" />
 <element name="by-partial-DF-name" type="iso:BitReqType" />
 </sequence>
 </complexType>
 </element>
 <element name="BER-TLV-data-objects-available"
 maxOccurs="1" minOccurs="0">
 <complexType>
 <sequence>
 <element name="in-EF.DIR" type="iso:BitReqType" />
 <element name="in-EF.ATR" type="iso:BitReqType" />
 </sequence>
 </complexType>
 </element>
 <element name="EF.x-access-services" maxOccurs="1" minOccurs="0">
 <complexType>
 <choice>

102 Bundesamt für Sicherheit in der Informationstechnik

 <element name="ReadBinary" type="iso:BasicRequirementsType" />
 <element name="ReadRecord" type="iso:BasicRequirementsType" />
 <element name="GetData" type="iso:BasicRequirementsType" />
 </choice>
 </complexType>
 </element>
 <element name="Root" maxOccurs="1" minOccurs="0">
 <complexType>
 <choice>
 <element name="Card-with-MF" type="iso:BasicRequirementsType" />
 <element name="Card-without-MF" type="iso:BasicRequirementsType" />
 </choice>
 </complexType>
 </element>
 </sequence>
 </extension>
 </complexContent>
</complexType>

<Application-selection> [optional]

This element MAY contain information about the method to select a card application. It consists of two
elements, each of type BitReqType:

• <by-full-DF-name> indicates that the card applications can be addressed by the full DF
name (see Table 85 in [ISO7816-4]).

Bundesamt für Sicherheit in der Informationstechnik 103

Figure 4: Example of a decision tree to recognize the card type

• <by-partial-DF-name> indicates that the card applications can be addressed by the partial
DF name (see Table 85 in [ISO7816-4]).

Details of the type BitReqType are described below.

<BER-TLV-data-objects-available> [optional]

This element contains information about the presence of BER-TLV coded data objects in EF.DIR and
EF.ATR. It consists of two elements, each of type :

• <in-EF.DIR> indicates the presence of BER-TLV coded data objects in EF.DIR.

• <in-EF.ATR> indicates the presence of BER-TLV coded data objects in EF.ATR.

Details of the type BitReqType are described below.

<EF.x-access-services> [optional]

This element contains information about the method to access EF.DIR and EF.ATR. It consists of a
choice between three elements, each of type BasicRequirementsType:

• <ReadBinary> indicates that both files should be accessed via READ BINARY.

• <ReadRecord> indicates that both files should be accessed via READ RECORD.

• <GetData> indicates that both files should be accessed via GET DATA.

<Root> [optional]

This element contains information about the presence of a root directory. It consists of a choice between
two elements, each of type BasicRequirementsType :

• <Card-with-MF> indicates that there is an MF on the Card.

• <Card-without-MF> indicates that there isn’t an MF on the Card.

4.4.7 BitReqType

The type BitReqType expands the type RequirementsType by the element <Bit> which contains a bit
represented as a Boolean value.
<complexType name="BitReqType">
 <complexContent>
 <extension base="iso:RequirementsType">
 <sequence>
 <element name="Bit" type="boolean" />
 </sequence>
 </extension>
 </complexContent>
</complexType>

4.4.8 ISO7816-4-CardCapabilitiesType

The type ISO7816-4-CardCapabilitiesType is an extension of the FileRefReqType. It is used by
the element <ISO7816-4-CardCapabilities>, which is part of the EFATRorINFOType. The
inherited element <Path> contains a path to the three card capability bytes, as long as these are not part of
the (EF.) ATR (compact header tags ‘71’, ‘72’ and ‘73’). The <Path> element is not necessary, if the card is
conforming to [ISO7816-4].
<complexType name="ISO7816-4-CardCapabilitiesType">

104 Bundesamt für Sicherheit in der Informationstechnik

 <complexContent>
 <extension base="iso:FileRefReqType">
 <sequence>
 <element name="FirstSoftwareFunctionTable" maxOccurs="1" minOccurs="1">
 <complexType>
 <sequence>
 <element name="DF-selection" maxOccurs="1" minOccurs="0">
 <complexType>
 <sequence>
 <element name="by-full-DF-name" maxOccurs="1"
 type="iso:BitReqType" minOccurs="0" />
 <element name="by-partial-DF-name" maxOccurs="1"
 type="iso:BitReqType" minOccurs="0" />
 <element name="by-path" maxOccurs="1"
 type="iso:BitReqType" minOccurs="0" />
 <element name="by-file-identifier" maxOccurs="1"
 type="iso:BitReqType" minOccurs="0" />
 <element name="implicit" maxOccurs="1"
 type="iso:BitReqType" minOccurs="0" />
 </sequence>
 </complexType>
 </element>
 <element name="Short-EF-identifier" maxOccurs="1"
 type="iso:BitReqType" minOccurs="0" />
 <element name="Record-number" maxOccurs="1"
 type="iso:BitReqType" minOccurs="0" />
 <element name="Record-identifier" maxOccurs="1"
 type="iso:BitReqType" minOccurs="0" />
 </sequence>
 </complexType>
 </element>
 <element name="SecondSoftwareFunctionTable">
 <complexType>
 <sequence>
 <element name="EFs-of-TLV-structure" maxOccurs="1"
 type="iso:BitReqType" minOccurs="0" />
 <element name="Behaviour-of-write-functions"
 maxOccurs="1" minOccurs="0">
 <complexType>
 <complexContent>
 <extension base="iso:RequirementsType">
 <sequence>
 <element name="Behaviour" type="iso:WriteBehaviourType" />
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 </element>
 <element name="Data-unit-size-in-quartets"
 maxOccurs="1" minOccurs="0">
 <complexType>
 <complexContent>
 <extension base="iso:RequirementsType">
 <sequence>
 <element name="Exponent">
 <simpleType>
 <restriction base="integer">
 <minInclusive value="1" />
 <maxInclusive value="31" />
 </restriction>
 </simpleType>
 </element>
 </sequence>
 </extension>

Bundesamt für Sicherheit in der Informationstechnik 105

 </complexContent>
 </complexType>
 </element>
 <element name="Value-FF-for-first-byte-of-BER-TLV-valid"
 type="iso:BitReqType" maxOccurs="1" minOccurs="0" />
 </sequence>
 </complexType>
 </element>
 <element name="ThirdSoftwareFunctionTable">
 <complexType>
 <sequence>
 <element name="Command-chaining"
 type="iso:BitReqType" maxOccurs="1" minOccurs="0" />
 <element name="Extended-Lc-and-Le-fields"
 type="iso:BitReqType" maxOccurs="1" minOccurs="0" />
 <element name="Logical-Channel-support" maxOccurs="1" minOccurs="0">
 <complexType>
 <sequence>
 <element name="LC-Number-by-Card" type="iso:BitReqType" />
 <element name="LC-Number-by-IFD" type="iso:BitReqType" />
 <element name="Number-of-Logical-Channels"
 maxOccurs="1" minOccurs="1">
 <complexType>
 <complexContent>
 <extension base="iso:RequirementsType">
 <sequence>
 <element name="Maxium-Number">
 <simpleType>
 <restriction base="integer">
 <minInclusive value="1" />
 <maxInclusive value="8" />
 </restriction>
 </simpleType>
 </element>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </extension>
 </complexContent>
</complexType>

4.4.9 WriteBehaviourType

The WriteBehaviourType is used to specify detailed requirements of the behaviour of a smart card.
See [ISO7816-4] for details.
<simpleType name="WriteBehaviourType">
 <restriction base="string">
 <enumeration value="One-time-write" />
 <enumeration value="Proprietary" />
 <enumeration value="Write-OR" />
 <enumeration value="Write-AND" />
 </restriction>

106 Bundesamt für Sicherheit in der Informationstechnik

</simpleType>

4.4.10 ExtendedLengthInfoType

The ExtendedLengthInfoType is used to specify information about the support of extended length.
This type is derived from the RequirementsType and defined as follows:
<complexType name="ExtendedLengthInfoType">
 <complexContent>

<extension base="iso:RequirementsType">
<sequence>
 <element name="GlobalLengthInfo" type="iso:LengthInfoType" />
 <element name="CommandSpecificLengthInfo"

type="iso:CommandSpecificLengthInfoType"
maxOccurs="unbounded" minOccurs="0" />

</sequence>
</extension>

 </complexContent>
</complexType>

<GlobalLengthInfo> [required]

This element provides general extended length information, which is valid unless it is overruled by a
CommandSpecificLengthInfo-element. It is of type LengthInfoType, which is specified
below.

<CommandSpecificLengthInfo> [optional, unbounded]

This element may exist multiple times and is used to provide command specific extended length
information. It is of type CommandSpecificLengthInfoType, which is specified below.

4.4.11 LengthInfoType

The LengthInfoType is used in the definition of the ExtendedLengthInfoType above and the
definition of CommandSpecificLengthInfoType below. It is defined as follows:
<complexType name="LengthInfoType">

<sequence>
<element name="MaxNc" type="positiveInteger" />
<element name="MaxNe" type="positiveInteger" />

</sequence>
</complexType>

It contains the following elements:

<MaxNc> [required]

Indicates the maximum value of the command length (Nc), which is valid unless it is overruled by the
MaxNc-element in some CommandSpecificLengthInfo-element.

<MaxNe> [required]

Indicates the maximum value of the expected response length (Ne), which is valid unless it is overruled
by the MaxNe-element in some CommandSpecificLengthInfo-element.

Bundesamt für Sicherheit in der Informationstechnik 107

4.4.12 CommandSpecificLengthInfoType

The CommandSpecificLengthInfoType is used in the definition of the
ExtendedLengthInfoType above and it is defined as follows:
<complexType name="CommandSpecificLengthInfoType">

<sequence>
<element name="Tag" type="byte"/>
<element name="Command" type="hexBinary"/>
<element name="LengthInfo" type="iso:LengthInfoType"/>

</sequence>
</complexType>

It contains the following elements:

<Tag> [required]

Indicates the tag (‘81’ – ‘8F’) of the standardized data structure, which specifies what the command
description in the Command-element includes (see [ISO7816-4], Section 5.4.3.2, Table 22).

<Command> [required]

Specifies the (part of the) command header, for which the extended length information in the
LengthInfo-element is provided.

<LengthInfo> [required]

Provides the command specific extended length information for the command identified by Command
and Tag. This element is of type LengthInfoType specified above.

4.5 ApplicationCapabilitiesType

The <ApplicationCapabilities> element is part of the CardInfo-element (cf. Section 4.1). It is
of type ApplicationCapabilitiesType and provides detailed information about the card
applications available on the card. When used for a card which contains an application capability description
as defined in [ISO24727-2] and/or is fully described by an appropriate [ISO7816-15] structure this element
MAY be omitted.
<complexType name="ApplicationCapabilitiesType">
 <sequence>
 <element name="ImplicitlySelectedApplication"
 type="iso:ApplicationIdentifierType" maxOccurs="1" minOccurs="0" />
 <element name="CardApplication" maxOccurs="unbounded"
 type="iso:CardApplicationType" minOccurs="0" />
 <element name="Other" type="dss:AnyType" minOccurs="0"/>
 </sequence>
 <attribute name="Id" type="ID" use="optional" />
 </complexType>

<ImplicitlySelectedApplication> [optional]

This element specifies which card application is implicitly selected after initialization.

<CardApplication> [optional, unbounded]

This element is present for every card application available on the card.

<Other> [optional]

This element MAY contain some additional element, which structure is defined by some other
specification.

108 Bundesamt für Sicherheit in der Informationstechnik

4.5.1 CardApplicationType
The <CardApplication> element of type CardApplicationType is part of the
ApplicationCapabilitiesType. The CardApplicationType is an extension of the type RequirementsType
containing the <RequirementLevel> element.
<complexType name="CardApplicationType">
 <complexContent>
 <extension base="iso:RequirementsType">
 <sequence>
 <element name="InterfaceProtocol"
 type="anyURI" maxOccurs="unbounded" minOccurs="0" />
 <element name="ApplicationIdentifier" maxOccurs="1"
 type="iso:ApplicationIdentifierType" minOccurs="1" />
 <element name="ApplicationName"
 type="string" maxOccurs="1" minOccurs="0" />
 <element name="LocalApplicationName"
 type="dss:InternationalStringType"
 maxOccurs="unbounded" minOccurs="0" />
 <element name="CardApplicationServiceInfo" maxOccurs="unbounded"
 type="iso:CardApplicationServiceType" minOccurs="0" />
 <element name="CardApplicationACL"
 type="iso:AccessControlListType" />
 <element name="DIDInfo"
 type="iso:DIDInfoType" maxOccurs="unbounded"
 minOccurs="0" />
 <element name="DataSetInfo"
 type="iso:DataSetInfoType" maxOccurs="unbounded"
 minOccurs="0" />
 <element name="Other" type="dss:AnyType" minOccurs="0"/>
 </sequence>
 <attribute name="Id" type="ID" use="optional" />
 </extension>
 </complexContent>
</complexType>

<InterfaceProtocol> [optional, unbounded]

This element MAY appear multiple times and indicates which protocols can be used to access the card
application. The protocols specified here MUST also be defined in the Interface-element in the
CardCapabilitiesType.

<ApplicationIdentifier>

This element contains the application identifier of the card application.

<ApplicationName> [optional]

This element contains an informative name of the card application.

<LocalApplicationName> [optional, unbounded]

This element is used to specify localized names of the card-application.

<CardApplicationServiceInfo> [optional, unbounded]

This element contains information about the services supported by the card application. For details refer
to the definition of CardApplicationServiceType.

<DIDInfo> [optional, unbounded]

This element is present for each differential identity (DID) of the card application and specifies the
related details of this DID. For details refer to the definition of DIDInfoType.

<DataSetInfo> [optional, unbounded]

Bundesamt für Sicherheit in der Informationstechnik 109

This element is present for each data set (and embodied data structures for interoperability) of the card
application. For details refer to the definition of DataSetInfoType.

<Other> [optional]

This element MAY contain some additional element, which structure is defined by some other
specification.

4.5.2 CardApplicationServiceInfoType

The <CardApplicationServiceInfo> element of type CardApplicationServiceType is part of the
definition of CardApplicationType. The CardApplicationServiceType is an extension of the type
RequirementsType containing the <RequirementLevel> element.
<complexType name="CardApplicationServiceType">
 <complexContent>
 <extension base="iso:RequirementsType">
 <sequence>
 <element name="CardApplicationServiceName" type="string" />
 <element name="CardApplicationServiceDescription" maxOccurs="1"
 type="iso:CardApplicationServiceDescriptionType"
 minOccurs="0" />
 <element name="Other" type="dss:AnyType" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

<CardApplicationServiceName>

This element contains the name of the card application service.

<ServiceACL>

This element contains access control information for the card application service (the structure of the
AccessControlListType is explained below).

<CardApplicationServiceDescription> [optional]

If present, this element contains an interface description of the card application service. For details refer
to the definition of CardApplicationServiceDescriptionType below. If the card application
service is standardized as described in [ISO24727-3] this element is not necessary.

<Other> [optional]

This element MAY contain some additional element, which structure is defined by some other
specification.

4.5.3 AccessControlListType

The AccessControlListType is originally defined in [ISO24727-3] and contains a sequence of
AccessRule-elements (also refer to page 32).
<complexType name="AccessControlListType">

<sequence>
<element name="AccessRule" type="iso:AccessRuleType"

 maxOccurs="unbounded" minOccurs="0"/>
</sequence>

</complexType>

110 Bundesamt für Sicherheit in der Informationstechnik

<AccessRule> [optional, unbounded]

This element defines an access rule, which is of type AccessRuleType.

4.5.4 AccessRuleType

The AccessRuleType is defined as follows:
<complexType name="AccessRuleType">

<sequence>
<element name="CardApplicationServiceName" type="string" />
<element name="Action" type="iso:ActionNameType" />
<element name="SecurityCondition" type="iso:SecurityConditionType"/>

</sequence>
</complexType>

It contains the following elements:

<CardApplicationServiceName> [optional]

This element specifies the CardApplicationServiceName, if this information is not provided
outside the AccessControlList as it is the case in the definition of the
CardApplicationServiceType.

<Action>

This element specifies the action as defined in [ISO24727-3] or loaded onto the card.

<SecurityCondition>

This element specifies the security conditions, which are necessary to perform the action specified
above. As defined in [ISO24727-3] the security condition may be specified as a Boolean combination of
DIDAuthenticationState-elements.

4.5.5 CardApplicationServiceDescriptionType

The CardApplicationServiceDescriptionType is defined as follows:
<complexType name="CardApplicationServiceDescriptionType">

<choice>
<element name="ServiceDescriptionURL" type="anyURI" />
<element name="ServiceDescriptionText" type="string" />

</choice>
</complexType>

It supports the following alternatives

<ServiceDescriptionURL> [choice]

This element contains a URL at which the ServiceDescriptionText may be found.

<ServiceDescriptionText> [choice]

This element contains the description of the service.

4.5.6 DIDInfoType

The <DIDInfo> element of type DIDInfoType is part of the CardApplicationType. The DIDInfoType
is an extension of the type RequirementsType containing the <RequirementLevel> element.

Bundesamt für Sicherheit in der Informationstechnik 111

<complexType name="DIDInfoType">
 <complexContent>
 <extension base="iso:RequirementsType">
 <sequence>
 <element name="DifferentialIdentity"
 type="iso:DifferentialIdentityType" />
 <element name="DIDACL" type="iso:AccessControlListType" />
 <element name="Other" type="dss:AnyType" minOccurs="0"/>
 </sequence>
 <attribute name="Id" type="ID" use="optional" />
 </extension>
 </complexContent>
</complexType>

<DifferentialIdentity>

According to [ISO24727-3] all key material used for authentication or other cryptographic operations is
represented by a differential identity (DID). The DifferentialIdentityType is described in detail below.

<DIDACL>

This element contains the access control list defining the access rights to the differential identities. For
more details refer to the definition of the AccessControlListType.

<Other> [optional]

This element MAY contain some additional element, which structure is defined by some other
specification.

4.5.7 DifferentialIdentityType

The <DifferentialIdentity> element of type DifferentialIdentityType is part of the
DIDInfoType.
<complexType name="DifferentialIdentityType">
 <sequence>
 <element name="DIDName" type="iso:DIDNameType" />
 <element name="LocalDIDName" type="dss:InternationalStringType"
 maxOccurs="unbounded" minOccurs="0" />
 <element name="DIDProtocol" type="anyURI" />
 <element name="DIDMarker" type="iso:DIDMarkerType" />
 <element name="DIDScope" type="iso:DIDScopeType" minOccurs="0" />
 <element name="DIDQualifier"
 type="iso:DIDQualifierType" minOccurs="0" maxOccurs="1" />
 </sequence>
</complexType>

<DIDName> [required]

This element contains the name (unique in the scope) which is used in function calls to refer to the
differential identity.

<LocalDIDName> [optional, unbounded]

This element is used to specify localized names of the differential identity.

<DIDProtocol> [required]

This element specifies the protocol of the differential identity. Standardized protocols are defined
[TR-03112-7] and [CEN15480-3] for example. Note that the protocol identifies the used cryptographic
protocol including the used commands as well as the secure messaging to be used after successful
completion of the cryptographic protocol.

112 Bundesamt für Sicherheit in der Informationstechnik

<DIDMarker> [required]

The structure of this element depends on the <DIDProtocol> element.

<DIDScope> [optional]

This element specifies whether the differential identity can be accessed from all card applications of the
card (global) or only within a certain card application (local).

<DIDQualifier> [optional]

If present, this element contains further information on the differential identity.

4.5.8 DIDQualifierType

The structure of this type is defined as follows:
<complexType name="DIDQualifierType">

<choice>
<element name="ApplicationIdentifier"

 type="iso:ApplicationIdentifierType" />
<element name="ObjectIdentifier" type="anyURI" />
<element name="ApplicationFunction" type="iso:BitString" />

</choice>
</complexType>

4.5.9 DataSetInfoType

The <DataSetInfo> element of type DataSetInfoType is part of the CardApplicationType. The
DataSetInfoType is an extension of the type RequirementsType containing the
<RequirementLevel> element.
<complexType name="DataSetInfoType">
 <complexContent>
 <extension base="iso:RequirementsType">
 <sequence>
 <element name="DataSetName" type="iso:DataSetNameType" />
 <element name="LocalDataSetName" type="dss:InternationalStringType"
 maxOccurs="unbounded" minOccurs="0" />
 <element name="DataSetACL" type="iso:AccessControlListType" />
 <element name="DataSetPath" type="iso:PathType" />
 <element name="DSI"
 type="iso:DSIType" maxOccurs="unbounded" minOccurs="0" />
 <element name="Other" type="dss:AnyType" minOccurs="0"/>
 </sequence>
 <attribute name="Id" type="ID" use="optional" />
 </extension>
 </complexContent>
</complexType>

<DataSetName> [required]

This element contains the name of a data set which can be used to address the data set in [ISO24727-3]
calls.

<LocalDataSetName> [optional, unbounded]

This element MAY be used to specify localized names of the data set.

<DataSetACL> [required]

Bundesamt für Sicherheit in der Informationstechnik 113

This element contains the access rules on the data set. For more details refer to the definition of
AccessControlListType.

<DataSetPath> [required]

This element contains the path to a data set. For more details refer to the definition of PathType.

<DSI> [optional, unbounded]

If the data set contains data structures for interoperability (DSIs) each of these elements MAY contain
further information about one DSI. Details of the DSIType are specified below.

<Other> [optional]

This element MAY contain some additional element, which structure is defined by some other
specification. Such an additional element MAY be used for post-issuance personalization purposes for
example.

4.5.10 DSIType

The DSIType is an extension of the type RequirementsType and is specified as follows:
<complexType name="DSIType">
 <complexContent>
 <extension base="iso:RequirementsType">
 <sequence>
 <element name="DSIName" type="iso:DSINameType" />
 <element name="DSIPath" type="iso:PathType" />
 </sequence>
 </extension>
 </complexContent>
</complexType>

<DSIName> [required}

This element contains the name of the DSI which is used for addressing the DSI in procedure calls.

<DSIPath> [required]

This element contains the path to the DSI on the card. For further details refer to the definition of
PathType.

4.6 Signature

To defeat attacks which make use of manipulated CardInfo-structures the issuers of CardInfo-files
SHOULD apply a digital signature according to [RFC3275] to protect the <CardInfo>-element or chosen
parts of it.

When signed CardInfo files are imported, the signature SHALL be verified according to an appropriate
policy.

Furthermore it SHOULD be ensured that

• especially protected key material for which the <Protected> element of the KeyRefType is
TRUE and

• potential dangerous APDUs in the CommandAPDU-element with CLA values ‘0x’ or ‘1x’, x{0,
…,9, A,…,F} and INS values ‘20’, ‘21’, ‘24’, ‘2C’, and ‘22’

114 Bundesamt für Sicherheit in der Informationstechnik

are only accessible or executed, if they are protected by an appropriate signature. CardInfo-files with
protected key material or dangerous APDU and without an appropriate signature SHOULD be rejected.

In a signature on a CardInfo file the signer SHOULD only use the ds:X509Data choice in the KeyInfo
element (see Section 4.4 in [RFC3275]).

All parts to be signed MUST be specified with ds:Reference elements. Every element to be included in
the signature MUST have an Id attribute which is used in the URI attribute of the ds:Reference
element. As the simplest case the whole <CardInfo> element is referenced, so that the signature is part of
the signed data and therefore is excluded when calculating the hash value (“enveloped signature”). On the
other hand it is possible to sign only child elements of the <CardInfo> element (e.g. <CardType>,
<CardIdentification> and <CardCapabilities>) as well as existing <CardApplication>
elements (contained in the element <ApplicationCapabilities>) so that it is possible to add a
complete card application (on the card and in the CardInfo file) without invalidating the existing signature.
The tests described above assure that an attacker is not able to use an unsigned part of the CardInfo file to
access sensitive key objects which are protected by a signature.

Bundesamt für Sicherheit in der Informationstechnik 115

References
[TR-03112-1] BSI: TR-03112-1: eCard-API-Framework – Part 1: Overview and Generic Mechanisms
[TR-03112-2] BSI: TR-03112-2: eCard-API-Framework – Part 2: eCard-Interface
[TR-03112-3] BSI: TR-03112-3: eCard-API-Framework – Part 3: Management-Interface
[TR-03112-5] BSI: TR-03112-5: eCard-API Framework – Part 5: Suppor- Interface
[TR-03112-6] BSI: TR-03112-6: eCard-API-Framework – Part 6: IFD-Interface
[TR-03112-7] BSI: TR-03112-7: eCard-API-Framework – Part 7: Protocols
[CEN15480-3] CEN: TS 15480-3: Identification card systems —European Citizen Card — Part 3:

European Citizen Card Interoperability using an application interface
[CEN15480-4] CEN: TS 15480-4: Identification card systems — European Citizen Card — Part 4:

Recommendations for European Citizen Card issuance, operation and use
[eGK-2] gematik: Specification of the electronic health insurance card - Part 2: Applications and

application-specific structures, Version 2.2.1
[RFC1738] IETF: RFC 1738: T. Berners-Lee, L. Masinter, M. McCahill: Uniform Resource Locators

(URL)
[RFC2119] IETF: RFC 2119: S. Bradner: Key words for use in RFCs to Indicate Requirement Levels
[RFC3275] IETF: RFC 3275: D. Eastlage, J. Reagle, D. Solo: (Extensible Markup Language)

XMLSignature Syntax and Processing
[RFC3280] IETF: RFC 3280: R. Housley, W. Polk, W. Ford, D. Solo: Internet X.509 Public Key

Infrastructure, Certificate and Certificate Revocation List (CRL) Profile
[RFC3281] IETF: RFC 3281: S. Farrell, R. Housley: An Internet Attribute Certificate Profile for

Authorization
[RFC3966] IETF: RFC 3966: H. Schulzrinne: The tel URI for Telephone Numbers
[ISO24727-2] ISO: ISO/IEC 24727-2: Identification Cards — Integrated Circuit Cards Programming

Interfaces — Part 2: Generic card interface
[ISO24727-3] ISO: ISO/IEC 24727-3: Identification Cards — Integrated Circuit Cards Programming

Interfaces — Part 3: Application Interface
[ISO24727-4] ISO: ISO/IEC 24727-4: Identification Cards — Integrated Circuit Cards Programming

Interfaces — Part 4: Application programming interface (API) administration
[ISO7816-15] ISO: ISO/IEC 7816-15: Identification cards - Integrated circuit(s) cards with contacts —

Part 15: Cryptographic information application
[ISO7816-3] ISO: ISO/IEC 7816-3: Identification cards — Integrated circuit cards — Part 3: Cards

with contacts — Electrical interface and transmission protocols
[ISO7816-4] ISO: ISO/IEC 7816-4: Identification cards — Integrated circuit cards — Part

4:Organization, security and commands for interchange
[ISO7816-8] ISO: ISO/IEC 7816-8: Identification cards — Integrated circuit cards — Part 8: Security

related interindustry commands
[PAOSv1.1] Liberty Alliance Project: Liberty Reverse HTTP Binding for SOAP Specification, Version

v1.1
[PAOSv2.0] Liberty Alliance Project: Liberty Reverse HTTP Binding for SOAP Specification, Version

v2.0
[SOAPv1.1] W3C: W3C Note: Simple Object Access Protocol (SOAP) 1.1

116 Bundesamt für Sicherheit in der Informationstechnik

	1 Overview of the eCard-API-Framework
	1.1 Key Words
	1.2 XML-Schema

	2 Overview of the ISO24727-3-Interface
	2.1 Card Application Service Access
	2.2 Connection Service
	2.3 Card Application Service
	2.4 Named data service
	2.5 Cryptographic service
	2.6 Differential identity service
	2.7 Authorization service

	3 Specification of the ISO24727-3-Interface
	3.1 Card Application Service Access
	3.1.1 Initialize
	3.1.2 Terminate
	3.1.3 CardApplicationPath

	3.2 Connection Services
	3.2.1 CardApplicationConnect
	3.2.2 CardApplicationDisconnect
	3.2.3 CardApplicationStartSession
	3.2.4 CardApplicationEndSession

	3.3 Card Application Services
	3.3.1 CardApplicationList
	3.3.2 CardApplicationCreate
	3.3.3 CardApplicationDelete
	3.3.4 CardApplicationServiceList
	3.3.5 CardApplicationServiceCreate
	3.3.6 CardApplicationServiceLoad
	3.3.7 CardApplicationServiceDelete
	3.3.8 CardApplicationServiceDescribe
	3.3.9 ExecuteAction

	3.4 Named Data Services
	3.4.1 DataSetList
	3.4.2 DataSetCreate
	3.4.3 DataSetSelect
	3.4.4 DataSetDelete
	3.4.5 DSIList
	3.4.6 DSICreate
	3.4.7 DSIDelete
	3.4.8 DSIWrite
	3.4.9 DSIRead

	3.5 Crypto Services
	3.5.1 Encipher
	3.5.2 Decipher
	3.5.3 GetRandom
	3.5.4 Hash
	3.5.5 Sign
	3.5.6 VerifySignature
	3.5.7 VerifyCertificate

	3.6 Differential Identity Services
	3.6.1 DIDList
	3.6.2 DIDCreate
	3.6.3 DIDGet
	3.6.4 DIDUpdate
	3.6.5 DIDDelete
	3.6.6 DIDAuthenticate

	3.7 Authorization service
	3.7.1 ACLList
	3.7.2 ACLModify

	4 CardInfoFiles
	4.1 CardInfoType
	4.2 CardTypeType
	4.2.1 ProfilingType

	4.3 CardIdentificationType
	4.3.1 ATRType
	4.3.2 ByteMaskType
	4.3.3 ByteType
	4.3.4 ATRInterfaceBytesType
	4.3.5 ATSType
	4.3.6 ATSInterfaceBytesType
	4.3.7 CardCallType
	4.3.8 ResponseAPDUType
	4.3.9 DataMaskType
	4.3.10 MatchingDataType
	4.3.11 MatchingRuleType

	4.4 CardCapabilitiesType
	4.4.1 RequirementsType
	4.4.2 BasicRequirementsType
	4.4.3 FileRefReqType
	4.4.4 PathType
	4.4.5 EFATRorINFOType
	4.4.6 ISO7816-4-CardServiceDataType
	4.4.7 BitReqType
	4.4.8 ISO7816-4-CardCapabilitiesType
	4.4.9 WriteBehaviourType
	4.4.10 ExtendedLengthInfoType
	4.4.11 LengthInfoType
	4.4.12 CommandSpecificLengthInfoType

	4.5 ApplicationCapabilitiesType
	4.5.1 CardApplicationType
	4.5.2 CardApplicationServiceInfoType
	4.5.3 AccessControlListType
	4.5.4 AccessRuleType
	4.5.5 CardApplicationServiceDescriptionType
	4.5.6 DIDInfoType
	4.5.7 DifferentialIdentityType
	4.5.8 DIDQualifierType
	4.5.9 DataSetInfoType
	4.5.10 DSIType

	4.6 Signature

